Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mLife ; 3(1): 74-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827515

RESUMO

Pseudomonas aeruginosa is a ubiquitous and metabolically versatile microorganism naturally found in soil and water. It is also an opportunistic pathogen in plants, insects, animals, and humans. In response to increasing cell density, P. aeruginosa uses two acyl-homoserine lactone (AHL) quorum-sensing (QS) signals (i.e., N-3-oxo-dodecanoyl homoserine lactone [3-oxo-C12-HSL] and N-butanoyl-homoserine lactone [C4-HSL]), which regulate the expression of hundreds of genes. However, how the biosynthesis of these two QS signals is coordinated remains unknown. We studied the regulation of these two QS signals in the rhizosphere strain PA1201. PA1201 sequentially produced 3-oxo-C12-HSL and C4-HSL at the early and late growth stages, respectively. The highest 3-oxo-C12-HSL-dependent elastase activity was observed at the early stage, while the highest C4-HSL-dependent rhamnolipid production was observed at the late stage. The atypical regulator RsaL played a pivotal role in coordinating 3-oxo-C12-HSL and C4-HSL biosynthesis and QS-associated virulence. RsaL repressed lasI transcription by binding the -10 and -35 boxes of the lasI promoter. In contrast, RsaL activated rhlI transcription by binding the region encoding the 5'-untranslated region of the rhlI mRNA. Further, RsaL repressed its own expression by binding a nucleotide motif located in the -35 box of the rsaL promoter. Thus, RsaL acts as a molecular switch that coordinates the sequential biosynthesis of AHL QS signals and differential virulence in PA1201. Finally, C4-HSL activation by RsaL was independent of the Las and Pseudomonas quinolone signal (PQS) QS signaling systems. Therefore, we propose a new model of the QS regulatory network in PA1201, in which RsaL represents a superior player acting at the top of the hierarchy.

2.
Nutrients ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892496

RESUMO

The imbalance of gut microbiota is an important factor leading to inflammatory bowel disease (IBD). Diffusible signal factor (DSF) is a novel quorum-sensing signal that regulates bacterial growth, metabolism, pathogenicity, and host immune response. This study aimed to explore the therapeutic effect and underlying mechanisms of DSF in a zebrafish colitis model induced by sodium dextran sulfate (DSS). The results showed that intake of DSF can significantly improve intestinal symptoms in the zebrafish colitis model, including ameliorating the shortening of the intestine, reducing the increase in the goblet cell number, and restoring intestinal pathological damage. DSF inhibited the upregulation of inflammation-related genes and promoted the expression of claudin1 and occludin1 to protect the tightness of intestinal tissue. The gut microbiome analysis demonstrated that DSF treatment helped the gut microbiota of the zebrafish colitis model recover to normal at the phylum and genus levels, especially in terms of pathogenic bacteria; DSF treatment downregulated the relative abundance of Aeromonas hydrophila and Staphylococcus aureus, and it was confirmed in microbiological experiments that DSF could effectively inhibit the colonization and infection of these two pathogens in the intestine. This study suggests that DSF can alleviate colitis by inhibiting the proliferation of intestinal pathogens and inflammatory responses in the intestine. Therefore, DSF has the potential to become a dietary supplement that assists in the antibiotic and nutritional treatment of IBD.


Assuntos
Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Percepção de Quorum , Peixe-Zebra , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/microbiologia , Colite/tratamento farmacológico , Percepção de Quorum/efeitos dos fármacos , Intestinos/microbiologia , Aeromonas hydrophila , Inflamação , Staphylococcus aureus/efeitos dos fármacos
3.
Sci Rep ; 14(1): 10942, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740839

RESUMO

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Assuntos
Actinobacteria , Naftacenos , Quinonas , Naftacenos/isolamento & purificação , Naftacenos/farmacologia , Quinonas/isolamento & purificação , Quinonas/farmacologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/citologia , Actinobacteria/isolamento & purificação , Fertilizantes , Musa/microbiologia , Metabolismo Secundário , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia
4.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996405

RESUMO

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Assuntos
Guanosina Monofosfato , Ralstonia solanacearum , Humanos , Virulência , Ralstonia solanacearum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Regulação Bacteriana da Expressão Gênica , Biofilmes
5.
Synth Syst Biotechnol ; 8(4): 618-628, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823038

RESUMO

Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt when grown in media typically used for Pseudomonas strains. In this study, minimum medium (MM) was found to favor Plt biosynthesis. Using the medium M, which contains all the salts of MM medium except for mannitol, as a basal medium, we compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose, mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis, but effectively antagonized fructose-dependent synthesis of Plt. Promoter-lacZ fusion reporter strains demonstrated that fructose acted through activation of the pltLABCDEFG (pltL) operon but had no effect on other genes of plt gene cluster; glucose or succinic acid antagonized fructose-dependent pltL induction. Mechanistically, fructose-mediated Plt synthesis involved carbon catabolism repression. The two-component system CbrA/CbrB and small RNA catabolite repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken together, this study provides a new model of fructose-dependent Plt production in PA1201 that can help improve Plt yield by biosynthetic approaches.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37288648

RESUMO

An endophytic actinobacterium, designated strain PLAI 1-29T, was isolated from the root tissue of Zingiber montanum collected from Pathum Thani province, Thailand. Strain PLAI 1-29T was characterized using a polyphasic taxonomic approach. It typically exhibited morphological and chemotaxonomic properties of the genus Streptomyces. Strain PLAI 1-29T produced a spiral spore chain on aerial mycelium and grew at 15-40 °C, pH 6-10 on International Streptomyces Project 2 agar. The maximum NaCl concentration for growth was 9 % (w/v). Cells of strain PLAI 1-29T presented ll-diaminopimelic acid, arabinose, galactose and ribose. The detected phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. The major menaquinones were MK-9(H6) and MK-9(H8). The major cellular fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The genome-based taxonomic details revealed the assignment of strain PLAI 1-29T to the genus Streptomyces and exhibited low threshold values for the delineation of a novel species by average nucleotide identity-blast (84.0%), average amino acid identity (80.0%) and digital DNA-DNA hybridization (27.6%) with its closest type strain, Streptomyces xinghaiensis S187T. Furthermore, several differential physiological and biochemical characteristics were detected between strain PLAI 1-29T and the closest type strain. Based on the combined phenotypic and genomic features, strain PLAI 1-29T (=TBRC 7645T=NBRC 113170T) is considered to represent a new Streptomyces species, for which we propose the name Streptomyces zingiberis sp. nov.


Assuntos
Actinobacteria , Streptomyces , Ácidos Graxos/química , Análise de Sequência de DNA , Filogenia , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Actinobacteria/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-37141114

RESUMO

An actinobacterium strain, PPF5-17T, was isolated from hot spring soil collected from Chiang Rai province, Thailand. The strain exhibited morphological and chemotaxonomic properties similar to those of members of the genus Micromonospora. Colonies of PPF5-17T were strong pinkish red and turned black after sporulation in ISP 2 agar medium. Cells formed single spores directly on the substrate mycelium. Growth was observed from 15 to 45 °C and at pH 5-8. Maximum NaCl concentration for growth was 3 % (w/v). PPF5-17T was found to have meso-diaminopimelic acid, xylose, mannose and glucose in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannosides were observed as the membrane phospholipids. MK-10(H6), MK-9(H6), MK-10(H4) and MK-9(H4) were the major menaquinones. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, anteiso-C17 : 0 and iso-C16 : 0. PPF5-17T shared the highest 16S rRNA gene sequence similarity with Micromonospora fluminis LMG 30467T (99.3 %). A genome-based taxonomic study revealed that PPF5-17T was closely related to Micromonospora aurantinigra DSM 44815T in the phylogenomic tree with an average nucleotide identity by blast (ANIb) of 87.7 % and a digital DNA-DNA hybridization (dDDH) value of, 36.1 % which were below the threshold values for delineation of a novel species. Moreover, PPF5-17T could be distinguished from its closest neighbours, M. fluminis LMG 30467T and M. aurantinigra DSM 44815T, with respect to a broad range of phenotypic properties. Thus, PPF5-17T represents a novel species, for which the name Micromonospora solifontis sp. nov. is proposed. The type strain is PPF5-17T (= TBRC 8478T = NBRC 113441T).


Assuntos
Actinobacteria , Fontes Termais , Micromonospora , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , Tailândia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fosfolipídeos/química , Actinobacteria/genética
8.
Arch Microbiol ; 205(6): 247, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212915

RESUMO

An actinomycete strain, AA8T, which produced a long straight chain of spores (verticillati type), was isolated from the rhizosphere soil of Mangifera indica in Bangkok, Thailand. A polyphasic taxonomic study was carried out to establish the taxonomic position of the strain. Strain AA8T formed a tight taxonomic position in the 16S rRNA gene tree with Streptomyces roseifaciens MBT76T. In contrast, the genome-based taxonomic analysis showed that strain AA8T shared low average nucleotide identity-BLAST (94.1%), the digital DNA-DNA hybridization (58.2%), and the average amino acid identity (93.6%) values with S. roseifaciens MBT76T. Moreover, a combination of physiological and biochemical properties indicated that strain AA8T was distinguished from all Streptomyces species with effectively published names. Strain AA8T, therefore, represents a novel species of Streptomyces, and the name Streptomyces telluris is proposed for the strain. The type strain is AA8T (= TBRC 8483T = NBRC 113461T). The chemical investigation led to the isolation of nine known compounds (compounds 1-9). Among these compounds, compound 7 (3,4-dihydroxybenzaldehyde) possesses strong antioxidant activity equal to ascorbic acid, a powerful antioxidative agent.


Assuntos
Streptomyces , Ácidos Graxos/química , Fosfolipídeos/química , Antioxidantes , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácido Diaminopimélico/química , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Microbiologia do Solo , Tailândia
9.
Artigo em Inglês | MEDLINE | ID: mdl-36961870

RESUMO

An actinobacterium strain, SW21T, was isolated from seawater collected in the upper Gulf of Thailand. Cells were Gram-stain-positive, aerobic and rod-shaped. Growth was observed from 15 to 37 °C and at pH 6-8. Maximum NaCl for growth was 14 % (w/v). meso-Diaminopimelic acid, arabinose, galactose, glucose, rhamnose and ribose were detected in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside were detected as the phospholipids in the cells. The major menaquinones were MK-9(H2) and MK-7(H2). The major cellular fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 and C18 : 010-methyl (TBSA). The 16S rRNA gene sequence data supported the assignment of strain SW21T to the genus Gordonia and showed that Gordonia mangrovi KCTC 49383T (98.7 %) was the closest relative. Moreover, the average nucleotide identity-blast (85.5 %) and digital DNA-DNA hybridization (30.7 %) values between strain SW21T and its closest neighbour were below the threshold values for delineation of a novel species. The combination of genotypic and phenotypic data indicated that strain SW21T is representative of novel species of the genus Gordonia. The name Gordonia aquimaris sp. nov. is proposed for strain SW21T. The type strain is SW21T (=TBRC 15691T=NBRC 115558T).


Assuntos
Actinobacteria , Bactéria Gordonia , Ácidos Graxos/química , Tailândia , RNA Ribossômico 16S/genética , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos , Água do Mar
10.
Sci Rep ; 13(1): 4825, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964207

RESUMO

Tirandamycin (TAM B) is a tetramic acid antibiotic discovered to be active on a screen designed to find compounds with neuroprotective activity. The producing strain, SBST2-5T, is an actinobacterium that was isolated from wastewater treatment bio-sludge compost collected from Suphanburi province, Thailand. Taxonomic characterization based on a polyphasic approach indicates that strain SBST2-5T is a member of the genus Streptomyces and shows low average nucleotide identity (ANI) (81.7%), average amino-acid identity (AAI) (78.5%), and digital DNA-DNA hybridization (dDDH) (25.9%) values to its closest relative, Streptomyces thermoviolaceus NBRC 13905T, values that are significantly below the suggested cut-off values for the species delineation, indicating that strain SBST2-5T could be considered to represent a novel species of the genus Streptomyces. The analysis of secondary metabolites biosynthetic gene clusters (smBGCs) in its genome and chemical investigation led to the isolation of TAM B. Interestingly, TAM B at 20 µg/mL displayed a suppressive effect on beta-secretase 1 (BACE1) with 68.69 ± 8.84% inhibition. Molecular docking simulation reveals the interaction mechanism between TAM B and BACE1 that TAM B was buried in the pocket of BACE-1 by interacting with amino acids Thr231, Asp 228, Gln73, Lys 107 via hydrogen bond and Leu30, Tyr71, Phe108, Ile118 via hydrophobic interaction, indicating that TAM B represents a potential active BACE1 inhibitor. Moreover, TAM B can protect the neuron cells significantly (% neuron viability = 83.10 ± 9.83% and 112.72 ± 6.83%) from oxidative stress induced by serum deprivation and Aß1-42 administration models at 1 ng/mL, respectively, without neurotoxicity on murine P19-derived neuron cells nor cytotoxicity against Vero cells. This study was reportedly the first study to show the neuroprotective and BACE1 inhibitory activities of TAM B.


Assuntos
Secretases da Proteína Precursora do Amiloide , Streptomyces , Chlorocebus aethiops , Animais , Camundongos , Secretases da Proteína Precursora do Amiloide/genética , Simulação de Acoplamento Molecular , Células Vero , Ácido Aspártico Endopeptidases/genética , Aminoácidos/genética , DNA , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Ácidos Graxos/química , Técnicas de Tipagem Bacteriana , Hibridização de Ácido Nucleico
11.
Arch Microbiol ; 205(4): 123, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939906

RESUMO

An actinomycete, designated strain HSS6-12T, was isolated from hot spring sediment collected from Ranong province, Thailand. The strain showed taxonomic characteristics consistent with those of members of the genus Micromonospora. HSS6-12T produced a single spore directly on the substrate mycelium, and no aerial mycelium was detected. The isomer of diamino acid presented in cell wall peptidoglycan was meso-diaminopimelic acid. Arabinose, xylose, glucose, and ribose were detected in whole-cell hydrolysates. MK-10(H4), MK-9(H4), and MK-10(H6) were major menaquinones. Major cellular fatty acids were iso-C16:0, iso-C15:0, and iso-C17:0. Phospholipid profile was composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylinositolmannosides. 16S rRNA gene analysis revealed that HSS6-12T shared the highest 16S rRNA gene sequence similarity with Micromonospora inositola DSM 43819T (99.3%). In contrast, the genome analysis showed that HSS6-12T formed a tight taxonomic position in a phylogenomic tree with Micromonospora endolithica DSM 44398T. Moreover, the average nucleotide identity-blast, the digital DNA-DNA hybridization, and the average amino acid identity values between HSS6-12T and M. inositola DSM 43819T and M. endolithica DSM 44398T were 83.1-84.0%, 27.5-28.7%, and 80.4-82.2%, respectively, indicating that HSS6-12T was different species with both closely related Micromonospora-type strains. In addition, HSS6-12T could be discriminated from its closely related type strains by many physiological and biochemical characteristics. Thus, HSS6-12T could be considered a novel species of the genus Micromonospora, and the name Micromonospora thermarum is proposed for the strain. The type strain is HSS6-12T (= BCC 41915T = JCM 17127T).


Assuntos
Actinobacteria , Fontes Termais , Micromonospora , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fosfolipídeos/análise , Ácidos Graxos/análise , Filogenia , Vitamina K 2/química , Actinobacteria/genética , DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
12.
Trends Microbiol ; 31(1): 36-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35941062

RESUMO

While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.


Assuntos
Percepção de Quorum , Peixe-Zebra , Animais , Bactérias/genética , Bactérias Gram-Negativas
13.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293339

RESUMO

The increasing prevalence of resistance in carbapenems is an escalating concern as carbapenems are reserved as last-line antibiotics. Although indiscriminate antibiotic usage is considered the primary cause for resistance development, increasing evidence revealed that inconsequential strains without any direct clinical relevance to carbapenem usage are harboring carbapenemase genes. This phenomenon indirectly implies that environmental microbial populations could be the 'hidden vectors' propelling carbapenem resistance. This work aims to explore the carbapenem-resistance profile of Vibrio species across diverse settings. This review then proceeds to identify the different factors contributing to the dissemination of the resistance traits and defines the transmission pathways of carbapenem resistance. Deciphering the mechanisms for carbapenem resistance acquisition could help design better prevention strategies to curb the progression of antimicrobial resistance development. To better understand this vast reservoir selecting for carbapenem resistance in non-clinical settings, Vibrio species is also prospected as one of the potential indicator strains for carbapenem resistance in the environment.


Assuntos
Vibrio , beta-Lactamases , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Vibrio/genética , Vibrio/metabolismo , Testes de Sensibilidade Microbiana
14.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806111

RESUMO

Bacteria and their eukaryotic hosts have co-evolved for millions of years, and the former can intercept eukaryotic signaling systems for the successful colonization of the host. The diffusible signal factor (DSF) family represents a type of quorum-sensing signals found in diverse Gram-negative bacterial pathogens. Recent evidence shows that the DSF is involved in interkingdom communications between the bacterial pathogen and the host plant. In this study, we explored the anti-inflammatory effect of the DSF and its underlying molecular mechanism in a zebrafish model. We found that the DSF treatment exhibited a strong protective effect on the inflammatory response of zebrafish induced by lipopolysaccharide (LPS). In the LPS-induced inflammation zebrafish model, the DSF could significantly ameliorate the intestinal pathological injury, reduce abnormal migration and the aggregation of inflammatory cells, inhibit the excessive production of inflammatory mediator reactive oxygen species (ROS) content, and prevent apoptosis. Through an RNA-Seq analysis, a total of 938 differentially expressed genes (DEGs) was screened between LPS and LPS + DSF treatment zebrafish embryos. A further bioinformatics analysis and validation revealed that the DSF might inhibit the LPS-induced zebrafish inflammatory response by preventing the activation of signaling in the Toll-like receptor pathway, attenuating the expression of pro-inflammatory cytokines and chemokines, and regulating the activation of the caspase cascade through restoring the expression of lysosomal cathepsins and apoptosis signaling. This study, for the first time, demonstrates the anti-inflammatory role and a potential pharmaceutical application of the bacterial signal DSF. These findings also suggest that the interkingdom communication between DSF-producing bacteria and zebrafish might occur in nature.


Assuntos
Lipopolissacarídeos , Peixe-Zebra , Animais , Apoptose , Bactérias , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Lisossomos , Percepção de Quorum/fisiologia , Receptores Toll-Like
15.
Biomedicines ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625774

RESUMO

Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut-skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut-skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35446756

RESUMO

A member of the genus Streptomyces, designated RCPT1-4T, was isolated from compost of Senna siamea (Lam.), collected from an agricultural area in Rayong province, Thailand. The spore morphology and the presence of ll-diaminopimelic acid in the peptidoglycan indicate that RCPT1-4T shows the typical properties of members of the genus Streptomyces. On the basis of the results of 16S rRNA gene sequence analysis, the strain should be classified as representing a member of the genus Streptomyces and was most closely related to Streptomyces fumigatiscleroticus NBRC 12999T with the highest 16S rRNA gene sequence similarity of 99.2 %, followed by Streptomyces spiralis NBRC 14215T (99.0 %). In addition, RCPT1-4T shared the highest average nucleotide identity by blast (ANIb) (86.0 %), and digital DNA-DNA hybridization (dDDH) (32.1 %) values with S. spiralis NBRC 14215T. Furthermore, several physiological and biochemical differences were observed between RCPT1-4T and the closely related type strains of species with validly published names. These taxonomic data indicated that RCPT1-4T could be considered to represent a novel species of the genus Streptomyces and the name Streptomyces sennicomposti sp. nov. is proposed for this strain. The type strain is RCPT1-4T (=TBRC 11260T=NBRC 114303T).


Assuntos
Actinobacteria , Compostagem , Streptomyces , Actinobacteria/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia
17.
mBio ; 13(2): e0364421, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35254135

RESUMO

Plant colonization by phytopathogens is a very complex process in which numerous factors are involved. Upon infection by phytopathogens, plants produce salicylic acid (SA) that triggers gene expression within the plant to counter the invading pathogens. The present study demonstrated that SA signal also directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the diffusible signaling factor (DSF) family QS signal. First, Xanthomonas campestris pv. campestris infection induces SA biosynthesis in the cabbage host plant. SA cannot be degraded by Xanthomonas campestris pv. campestris during culturing. Exogenous addition of SA or endogenous production of SA induces DSF signal turnover during late growth phase of Xanthomonas campestris pv. campestris in XYS medium that mimics plant vascular environments. Further, the DSF turnover gene rpfB is required for SA induction of DSF turnover. However, SA does not affect the expression of rpfB and DSF biosynthesis gene rpfF at the transcriptional level. SA induction of DSF turnover only occurs under acidic conditions in XYS medium. Furthermore, addition of SA to XYS medium significantly increased both culture and cytoplasmic pH. Increased cytoplasmic pH induced DSF turnover in a rpfB-dependent manner. In vitro RpfB-dependent DSF turnover activity increased when pH increased from 6 to 8. SA exposure did not affect the RpfB-dependent DSF turnover in vitro. Finally, SA-treated Xanthomonas campestris pv. campestris strain exhibited enhanced virulence when inoculated on cabbage. These results provide new insight into the roles of SA in host plants and the molecular interactions between Xanthomonas campestris pv. campestris and cruciferous plants. IMPORTANCE SA is a phenolic acid plant hormone that plays an essential role in plant defenses against biotrophic and semibiotrophic pathogens. Substantial progress has been made in understanding the pivotal role of SA in plant immunity. However, the roles of SA in inhibiting invading plant pathogens and the associated underlying molecular mechanisms are not yet fully understood. The present study demonstrated that the SA signal directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the DSF family QS signal via a pH-dependent manner. These findings provide new insight into the roles of SA and expand our understanding of the molecular interactions between pathogens and plant hosts.


Assuntos
Brassica , Xanthomonas campestris , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Percepção de Quorum/genética , Ácido Salicílico/metabolismo , Xanthomonas campestris/genética
18.
J Appl Microbiol ; 132(2): 772-784, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34260807

RESUMO

Extensively produced by members of the genus Streptomyces, piericidins are a large family of microbial metabolites, which consist of main skeleton of 4-pyridinol with methylated polyketide side chain. Nonetheless, these metabolites show differences in their bioactive potentials against micro-organisms, insects and tumour cells. Due to its close structural similarity with coenzyme Q, piericidins also possess an inhibitory activity against NADH dehydrogenase as well as Photosystem II. This review studied the latest research progress of piericidins, covering the chemical structure and physical properties of newly identified members, bioactivities, biosynthetic pathway with gene clusters and future prospect. With the increasing incidence of drug-resistant human pathogen strains and cancers, this review aimed to provide clues for the development of either new potential antibiotics or anti-tumour agents.


Assuntos
Antibacterianos , Antineoplásicos , Piridinas/farmacologia , Streptomyces , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Família Multigênica , Streptomyces/química , Streptomyces/genética
19.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748585

RESUMO

An actinobacterium strain PLK6-54T was isolated from Lankwai peat swamp forest soil collected from Yala province, Thailand. Strain PLK6-54T exhibited morphological and chemotaxonomic properties described for the genus Streptomyces. It formed a spiral spore chain directly on aerial mycelium. Growth was observed between 20 and 40 °C and at pH 5-8. The maximum NaCl for growth was 2 % (w/v). ll-Diaminopimelic acid, arabinose and ribose were detected in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside were detected as the phospholipids. The major menaquinones were MK-10(H2) and MK-9(H6). The major cellular fatty acids were iso-C16 : 0, anteiso-C15 : 0 and iso-C14 : 0. 16S rRNA gene sequence data supported the assignment of strain PLK6-54T to the genus Streptomyces and showed that Streptomyces rubidus NBRC 102073T (99.0 %) was the closest relative. Moreover, the average nucleotide identity-blast (85.5 %) and digital DNA-DNA hybridization (30.7 %) values reported between strain PLK6-54T and its closest neighbour were below the threshold values for delineation of a novel species. Strain PLK6-54T could be distinguished from related validly described Streptomyces species by several phenotypic properties. The combination of genotypic and phenotypic data indicated that strain PLK6-54T is representative of a novel species of the genus Streptomyces. The name Streptomyces acidipaludis sp. nov. is proposed for strain PLK6-54T. The type strain is PLK6-54T (=TBRC 11250T=NBRC 114297T).


Assuntos
Ácidos Graxos , Streptomyces , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Áreas Alagadas , Solo , Análise de Sequência de DNA , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Fosfolipídeos/química , Florestas
20.
Synth Syst Biotechnol ; 6(4): 262-271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34584994

RESUMO

Histone-like nucleoid-structuring (H-NS) proteins are key regulators in gene expression silencing and in nucleoid compaction. The H-NS family member proteins MvaU in Pseudomonas aeruginosa are thought to bind the same AT-rich regions of chromosomes and function to coordinate the control of a common set of genes. Here, we explored the molecular mechanism by which MvaU controls PCA biosynthesis in P. aeruginosa PA1201. We present evidence suggesting that MvaU is self-regulated. Deletion of mvaU significantly increased PCA production, and PCA production sharply decreased when mvaU was over-expressed. MvaU transcriptionally repressed phz2 cluster expression and consequently reduced PCA biosynthesis. ß-galactosidase assays confirmed that base pairing near the -35 box is required when MvaU regulates PCA production in PA1201. Electrophoretic mobility shift assays (EMSA) and additional point mutation analysis demonstrated that MvaU directly bound to an AT-rich motif within the promoter of the phz2 cluster. Chromatin immunoprecipitation (ChIP) analysis also indicated that MvaU directly bound to the P5 region of the phz2 cluster promoter. MvaU repression of PCA biosynthesis was independent of QscR and OxyR in PA1201 and neither PCA or H2O2 were the environmental signals that induced mvaU expression. These findings detail a new MvaU-dependent regulatory pathway of PCA biosynthesis in PA1201 and provide a foundation to increase PCA fermentation titer by genetic engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...