Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Des Monomers Polym ; 26(1): 132-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125223

RESUMO

ß-cyclodextrin butenate was synthesized by using N, N'-Carbonyldiimidazole (CDI) activating reagent and 4-Dimethylaminopyridine (DMAP) as catalyst. The best preparation condition of ß-CD butenate was described as below: reaction temperature was 25°C, concentration of 2-butenoic acid was 450 mmol/L, concentration of DMAP was 12.5 mmol/L and reaction time was 20 minutes and at this condition the yield of ß-CD butenate was 0.83 mmol/g. According to the results of FT-IR spectrum, NMR spectroscopy and HPLC-QTof-mass spectrum of ß-CD butenate, there were four types ß-CD butenate synthesized, which were ß-CD-2-butenoic acid monoester, ß-CD-2-butenoic acid diester, ß-CD-2-butenoic acid triester and ß-CD-2-butenoic acid tetraester, respectively.

2.
Plant Mol Biol ; 61(6): 845-61, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16927200

RESUMO

Elucidating the regulatory mechanisms of plant organ formation is an important component of plant developmental biology and will be useful for crop improvement applications. Plant organ formation, or organogenesis, occurs when a group of primordial cells differentiates into an organ, through a well-orchestrated series of events, with a given shape, structure and function. Research over the past two decades has elucidated the molecular mechanisms of organ identity and dorsalventral axis determinations. However, little is known about the molecular mechanisms underlying the successive processes. To develop an effective approach for studying organ formation at the molecular level, we generated organ-specific gene expression profiles (GEPs) reflecting early development in rice stamen. In this study, we demonstrated that the GEPs are highly correlated with early stamen development, suggesting that this analysis is useful for dissecting stamen development regulation. Based on the molecular and morphological correlation, we found that over 26 genes, that were preferentially up-regulated during early stamen development, may participate in stamen development regulation. In addition, we found that differentially expressed genes during early stamen development are clustered into two clades, suggesting that stamen development may comprise of two distinct phases of pattern formation and cellular differentiation. Moreover, the organ-specific quantitative changes in gene expression levels may play a critical role for regulating plant organ formation.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , Oryza/genética , Análise por Conglomerados , Etiquetas de Sequências Expressas , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Hibridização In Situ , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...