Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Fei Ai Za Zhi ; 26(10): 741-752, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37989337

RESUMO

BACKGROUND: There is a high morbidity, mortality, and poor clinical prognosis of lung squamous cell carcinoma (LUSC). However, there is currently no effective targeted treatment plan for LUSC. As a long non-coding RNA (lncRNA), lncRNA miR143HG has been proven to play an important role in the occurrence and development of various tumors. However, the biological role played by lncRNA miR143HG in LUSC cells is still unclear. Therefore, this study aimed to investigate the mechanism of lncRNA miR143HG on regulating the biological behavior of LUSC H520 cells. METHODS: Pan-cancer analysis and differential expression analysis of lncRNA miR143HG were performed based on The Cancer Genome Atlas (TCGA) database. The predictive effect of lncRNA miR143HG on the diagnosis and prognosis of LUSC was evaluated by adopting the receiver operating characteristic (ROC) curve and timeROC curve. The enrichment degree of each pathway to lncRNA miR143HG was determined. The expression of lncRNA miR143HG and miR-155 in BEAS-2B cells and H520 cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR). H520 cells were randomly divided into blank control group (without any treatment), negative control group (transfected with lncRNA-NC), lncRNA miR143HG group (transfected with lncRNA miR143HG), and lncRNA miR143HG+miR-155 group (co-transfected with lncRNA miR143HG and miR-155). The approaches of CCK-8, wound healing test, Transwell assay, flow cytometry, qRT-PCR, and Western blot were respectively employed to detect the cell proliferation ability, cell migration ability, cell invasion ability, cell apoptosis rate, and expression level of related genes and proteins of the Wnt/ß-Catenin pathway. RESULTS: The results of pan-cancer analysis and differential analysis collectively showed that except for renal clear cell carcinoma, the expression of lncRNA miR143HG in other cancer tissues was higher than that in healthy tissues, and the differences were significant in LUSC. The evaluation results of the ROC curve and timeROC curve suggested that lncRNA miR143HG was of great significance in the prediction of diagnosis and prognosis of LUSC. The pathways enriched in high expression of lncRNA miR143HG mainly included focal adhesion, vascular smooth muscle contraction, calcium signaling pathways, and so on; the pathways enriched in the low expression of lncRNA miR143HG embraced oxidative phosphorylation, cell cycle, basic transcription factors, etc. The qRT-PCR results showed that lncRNA miR143HG was low expressed but miR-155 was highly expressed in H520 cells when compared to BEAS-2B cells (P<0.05). Compared with the negative control group, the expression levels of the gene of lncRNA miR143HG, the gene and protein of Wnt, as well as the gene and protein of ß-Catenin were significantly increased, while the gene expression of miR-155, the ability of cell proliferation, cell migration, and cell invasion were significantly reduced, but the cell apoptosis rate was dominantly elevated in cells of lncRNA miR143HG group (P<0.05). In addition, compared with the lncRNA miR143HG group, overexpression of miR-155 could reverse the biological behavior mediated by lncRNA miR143HG, and the difference was statistically significant (P<0.05). CONCLUSIONS: LncRNA miR143HG was of great significance for the biological behavior of H520 cells. LncRNA miR143HG inhibited the ability of proliferation, migration, and invasion, as well as enhanced the apoptosis of H520 cells by downregulating miR-155 expression, which may be related to the Wnt/ß-Catenin pathway.
.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , MicroRNAs/genética , Pulmão/patologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
J Hazard Mater ; 408: 124410, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33187799

RESUMO

A regenerable ion-imprinted magnetic biocomposite (IIMB) was successfully synthesized for simultaneous removal of Pb2+ using Serratia marcescens and carboxymethyl chitosan (CMC) as functional carriers, Pb2+ was utilized as the imprinted ion, while Fe3O4 served as the magnetic component. The structure and properties of IIMB were characterized by various techniques. The adsorption kinetics, isotherms and thermodynamics were applied to interpret the Pb2+ adsorption process on IIMB. The results showed the IIMB possessed prominent uptake ability toward Pb2+. The pseudo-second-order kinetic (R2 = 0.9989) and Langmuir models (R2 = 0.9555) fitted the data well. Adsorption thermodynamics revealed that the adsorption was a spontaneous endothermic reaction. The possible adsorption mechanisms involved physical adsorption, electrostatic attraction and complexing. Moreover, because Pb2+ can be specifically and strongly adsorbed on IIMB, a simple method for detection of Pb2+ was established by coupling IIMB with flame atomic absorption spectrometry (IIMB-FAAS). The developed IIMB-FAAS assay can sensitively detect Pb2+ with a linear range from 5.0 to 500.0 µg/L. The detection limit (LOD) of 0.95 µg/L as well as a quantification limit (LOQ) of 3.20 µg/L were obtained. This work proved that the IIMB could selective and efficient adsorb Pb2+, which provided some insights into wastewater treatment, water quality inspection and environmental remediation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Fenômenos Magnéticos , Termodinâmica
3.
Appl Microbiol Biotechnol ; 104(23): 9877-9890, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33047168

RESUMO

The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer. KEY POINTS: • Aptamer biosensor is a good platform for microbial detection. • Aptamer biosensors include optical sensors and electrochemical sensors. • Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Vírus , Bactérias/genética , Colorimetria , Humanos
4.
Environ Sci Pollut Res Int ; 27(10): 10811-10821, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31942719

RESUMO

A novel biological material named activated carbon fibers-sodium alginate@Sphingopyxis sp. YF1 (ACF-SA@YF1) was synthesized for microcystin-RR (MC-RR) and nutrient pollutant degradation in eutrophic water. The synthesized biomaterial was characterized by scanning electron microscopy (SEM). Box-Behnken design and response surface methodology (RSM) were utilized for the optimization of conditions during the MC-RR degradation. The degradation of MC-RR and nutrient pollutants was dynamically detected. The results revealed that the optimal conditions were temperature 32.51 °C, pH 6.860, and inoculum 14.97%. The removal efficiency of MC-RR, nitrogen, phosphorus, and chemical oxygen demand were 0.76 µg/mL/h, 32.45%, 94.57%, and 64.07%, respectively. In addition, ACF-SA@YF1 also performed satisfactory cyclic stability, while the MC-RR removal efficiency was 70.38% after seven cycles and 78.54% of initial activity after 20 days of storage. Therefore, it is reasonable to believe that ACF-SA@YF1 is an effective material which has a great prospect in removing MC-RR and nutrients from freshwater ecosystems.


Assuntos
Poluentes Ambientais , Microcistinas , Alginatos , Biodegradação Ambiental , Fibra de Carbono , Carvão Vegetal , Ecossistema , Nutrientes
5.
Mikrochim Acta ; 186(11): 711, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31650251

RESUMO

An aptamer-based assay is described for the determination of Salmonella typhimurium (S. typh). Carboxymethyl chitosan was loaded with amino-modified aptamer against S. typh, and then adsorbed on gold nanoparticles by electrostatic interaction to form a composite that acts as the molecular recognition element. In the presence of S. typh, it will be bound by the aptamer, and this changes the structure of the recognition element. On addition of salt solution, the gold nanoparticles agglomerate so that the color of the solution changes from red to blue. S. typh can be detected via measurement of the absorbance at 550 nm. Absorbance increases linearly with the logarithm of the S. typh concentration in the range from 100 to 109 cfu·mL-1. The limit of detection is 16 cfu·mL-1. The specificity and practicability of the assay were evaluated. The recoveries of S. typh from spiked milk samples are between 92.4 and 97.2%. The analytical results are basically consistent with those of a plate counting method. Graphical abstract Schematic representation of the colorimetric assay for Salmonella typhimuium (S. typh) using carboxymethyl chitosan (CMCS)-aptamer (Apt)-gold nanoparticles (AuNPs) composites.


Assuntos
Aptâmeros de Nucleotídeos/química , Quitosana/análogos & derivados , Colorimetria/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , Salmonella typhimurium/isolamento & purificação , Animais , Técnicas Bacteriológicas/métodos , Quitosana/química , Ouro/química , Limite de Detecção , Leite/microbiologia , Salmonella typhimurium/química
6.
PLoS One ; 14(3): e0213377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917141

RESUMO

It is vital to understand the adsorption mechanisms and identify the adsorption kinetics when applying an adsorbent to remove heavy metals from aqueous solution. A Pb(II) imprinted magnetic biosorbent (Pb(II)-IMB) was developed for the removal of Pb2+ via lead ion imprinting technology and crosslinking reactions among chitosan (CTS), Serratia marcescens and Fe3O4. The effect of different parameters such as solution pH, adsorbent dosage, selectivity sorption and desorption were investigated on the absorption of lead ion by Pb(II)-IMB. The adsorbent was characterized by a Brunauer-Emmett Teller (BET) analysis, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The adsorption kinetics, equilibrium and thermodynamics of Pb(II)-IMB for Pb(II) were studied. The results of the abovementioned analyses showed that the adsorption kinetic process fit well with the second-order equation. The adsorption isotherm process of Pb(II) on the Pb(II)-IMB was closely related to the Langmuir model. Thermodynamic studies suggested the spontaneous and endothermic nature of adsorption of Pb(II) by Pb(II)-IMB. The adsorption mechanism of Pb(II)-IMB was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results indicated that the nitrogen in the amino group and the oxygen in the hydroxyl group of Pb(II)-IMB were coordination atoms.


Assuntos
Chumbo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Quitosana/química , Reagentes de Ligações Cruzadas , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio , Cinética , Chumbo/química , Magnetismo , Impressão Molecular , Serratia marcescens/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Difração de Raios X
7.
Environ Technol ; 40(4): 499-507, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098947

RESUMO

A novel biological material with high adsorption capacity and good selectivity for Pb2+ was synthesized. Response surface methodology was utilized for the optimization of the variables during the synthesis. The synthesized biosorbent was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The optimized preparation condition for lead-ion-imprinted magnetic biosorbent (Pb(II)-IMB) was obtained (0.19 g chitosan (CTS), 0.43 g magnetic Fe3O4 and 2.11 mL/gCTS of epichlorohydrin). The highest value for the removal of lead ion was estimated to be 86.85%, with an absorption capacity of 69.48 mg/g. The characterization results indicated that Pb(II)-IMB was rich in adsorbable groups to adsorb metal ions. Because of the magnetic property of the synthesized products, it can be separated from the water easily. The relative selectivity coefficients of Pb(II)-IMB for Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Ni(II) were 2.32, 2.20 and 2.05 times higher than the non-imprinted magnetic biosorbent, respectively. Pb(II)-IMB could be reused at least five times with only ∼13% loss. These results suggested that Pb(II)-IMB was a new, efficient and low-cost material for removing Pb(II) from wastewater.


Assuntos
Materiais Biocompatíveis , Purificação da Água , Chumbo , Magnetismo , Poluentes da Água
8.
J Nanosci Nanotechnol ; 18(5): 3654-3659, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442879

RESUMO

This study prepared an innovative 3-mercaptopropionic acid modified ZnSe/ZnS core/shell quantum dots (MPA-ZnSe/ZnS QDs), and established a rapid fluorescence method to detect the E. coli cells count by using MPA-ZnSe/ZnS QDs as fluorescence probe. The formulation variables and process were optimized using the response surface methodology (RSM). Fluorescence microscopy was used to obtain fluorescence microscope images of MPA-ZnSe/ZnS QDs that bind to bacteria. The fluorescence peak intensity increases with increasing cells count in the range of 101-108 CFU/mL. Compared with the traditional based on fluorescent detection methods, this method is more convenient and useful in the bacterial count determination.


Assuntos
Escherichia coli/isolamento & purificação , Fluorescência , Pontos Quânticos , Sulfetos , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...