Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38669174

RESUMO

Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.

2.
EBioMedicine ; 90: 104541, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36996601

RESUMO

BACKGROUND: Identifying individuals at risk for severe mental illness (SMI) is crucial for prevention and early intervention strategies. While MRI shows potential for case identification even before illness onset, no practical model for mental health risk monitoring has been developed. This study aims to develop an initial version of an efficient and practical model for mental health screening among at-risk populations. METHODS: A deep learning model known as Multiple Instance Learning (MIL) was adopted to train and test a SMI detection model with clinical MRI scans of 14,915 patients with SMI (age 32.98 ± 12.01 years, 9102 women) and 4538 healthy controls (age 40.60 ± 10.95 years, 2424 women) in the primary dataset. Validation analysis was conducted in an independent dataset with 290 patients (age 28.08 ± 10.95 years, 169 women) and 310 healthy participants (age 33.55 ± 11.09 years, 165 women). Another three machine learning models of ResNet, DenseNet and EfficientNet were used for comparison. We also recruited 148 individuals receiving high-stress medical school education to characterize the potential real-world utility of the MIL model in detecting risk of mental illness. FINDINGS: Similar performance of successful differentiation of individuals with SMI and healthy controls was observed for the MIL model (AUC: 0.82) and other models (ResNet, DenseNet, EfficientNet, 0.83, 0.81, and 0.80 respectively). MIL had better generalization in the validation test than other models (AUC: 0.82 vs 0.59, 0.66 and 0.59), and less drop-off in performance from 3.0T to 1.5T scanners. The MIL model did better in predicting clinician ratings of distress than self-ratings with questionnaires (84% vs 22%) in the medical student sample. Brain regions that contributed to SMI identification were mainly neocortical, including right precuneus, bilateral temporal regions, left precentral/postcentral gyrus, bilateral medial prefrontal cortex and right cerebellum. INTERPRETATION: Our digital model based on brief clinical MRI protocols identified individual SMI patients with good accuracy and high sensitivity, suggesting that with incremental improvements the approach may offer potentially useful aid for early identification and intervention to prevent illness onset in vulnerable at-risk populations. FUNDING: This study was supported by the National Natural Science Foundation of China, National Key Technologies R&D Program of China, and Sichuan Science and Technology Program.


Assuntos
Inteligência Artificial , Transtornos Mentais , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Adolescente , Transtornos Mentais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Saúde Mental , Aprendizado de Máquina
3.
Hum Brain Mapp ; 43(10): 3023-3036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357053

RESUMO

Ischemic stroke is the most common type of stroke, ranked as the second leading cause of death worldwide. The Alberta Stroke Program Early CT Score (ASPECTS) is considered as a systematic method of assessing ischemic change on non-contrast CT scans (NCCT) of acute ischemic stroke (AIS) patients, while still suffering from the requirement of experts' experience and also the inconsistent results between readers. In this study, we proposed an automated ASPECTS method to utilize the powerful learning ability of neural networks for objectively scoring CT scans of AIS patients. First, we proposed to use the CT perfusion (CTP) from one-stop stroke imaging to provide the golden standard of ischemic regions for ASPECTS scoring. Second, we designed an asymmetry network to capture features when comparing the left and right sides for each ASPECTS region to estimate its ischemic status. Third, we performed experiments in a large main dataset of 870 patients, as well as an independent testing dataset consisting of 207 patients with radiologists' scorings. Experimental results show that our network achieved remarkable performance, as sensitivity and accuracy of 93.7 and 92.4% in the main dataset, and 95.5 and 91.3% in the independent testing dataset, respectively. In the latter dataset, our analysis revealed a high positive correlation between the ASPECTS score and the prognosis of patients in 90DmRs. Also, we found ASPECTS score is a good indicator of the size of CTP core volume of an infraction. The proposed method shows its potential for automated ASPECTS scoring on NCCT images.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Alberta , Isquemia Encefálica/diagnóstico por imagem , AVC Isquêmico/diagnóstico por imagem , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
4.
Neuroimage ; 245: 118687, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34732323

RESUMO

Preliminary studies have shown the feasibility of deep learning (DL)-based super-resolution (SR) technique for reconstructing thick-slice/gap diagnostic MR images into high-resolution isotropic data, which would be of great significance for brain research field if the vast amount of diagnostic MRI data could be successively put into brain morphometric study. However, less evidence has addressed the practicability of the strategy, because lack of a large-sample available real data for constructing DL model. In this work, we employed a large cohort (n = 2052) of peculiar data with both low through-plane resolution diagnostic and high-resolution isotropic brain MR images from identical subjects. By leveraging a series of SR approaches, including a proposed novel DL algorithm of Structure Constrained Super Resolution Network (SCSRN), the diagnostic images were transformed to high-resolution isotropic data to meet the criteria of brain research in voxel-based and surface-based morphometric analyses. We comprehensively assessed image quality and the practicability of the reconstructed data in a variety of morphometric analysis scenarios. We further compared the performance of SR approaches to the ground truth high-resolution isotropic data. The results showed (i) DL-based SR algorithms generally improve the quality of diagnostic images and render morphometric analysis more accurate, especially, with the most superior performance of the novel approach of SCSRN. (ii) Accuracies vary across brain structures and methods, and (iii) performance increases were higher for voxel than for surface based approaches. This study supports that DL-based image super-resolution potentially recycle huge amount of routine diagnostic brain MRI deposited in sleeping state, and turning them into useful data for neurometric research.


Assuntos
Aprendizado Profundo , Epilepsia/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Feminino , Humanos , Imageamento Tridimensional , Masculino
5.
Phys Med Biol ; 66(6): 065031, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729998

RESUMO

The worldwide spread of coronavirus disease (COVID-19) has become a threat to global public health. It is of great importance to rapidly and accurately screen and distinguish patients with COVID-19 from those with community-acquired pneumonia (CAP). In this study, a total of 1,658 patients with COVID-19 and 1,027 CAP patients underwent thin-section CT and were enrolled. All images were preprocessed to obtain the segmentations of infections and lung fields. A set of handcrafted location-specific features was proposed to best capture the COVID-19 distribution pattern, in comparison to the conventional CT severity score (CT-SS) and radiomics features. An infection size-aware random forest method (iSARF) was proposed for discriminating COVID-19 from CAP. Experimental results show that the proposed method yielded its best performance when using the handcrafted features, with a sensitivity of 90.7%, a specificity of 87.2%, and an accuracy of 89.4% over state-of-the-art classifiers. Additional tests on 734 subjects, with thick slice images, demonstrates great generalizability. It is anticipated that our proposed framework could assist clinical decision making.


Assuntos
COVID-19/diagnóstico por imagem , Infecções Comunitárias Adquiridas/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , Diagnóstico por Computador , Diagnóstico Diferencial , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
6.
ACS Appl Mater Interfaces ; 13(1): 2072-2080, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347756

RESUMO

As typical 2D materials, VSe2 and MoSe2 both play a complementary role in Li/Na/K storage. Therefore, we designed and optimized the VSe2/MoSe2 heterostructure to gain highly efficient Li/Na/K-ion batteries. Most importantly, achieving fast Li/Na/K-ion diffusion kinetics in the interlayer of VSe2/MoSe2 is a key point. First of all, first-principles calculations were carried out to systematically investigate the packing structure, mechanical properties, band structure, and Li/Na/K storage mechanism. Our calculated results suggest that a large interlayer spacing (3.80 Å), robust structure, and metallic character pave the way for achieving excellent charge-discharge performance for the VSe2/MoSe2 heterostructure. Moreover, V and Mo ions both suffer a very mild redox reaction even if Li/Na/K ions fill the interlayer space. These structures were all further verified to show thermal stability (300 K) by means of the AIMD method. By analyzing the Li/Na/K diffusion behavior and the effect of vacancy defect on the structural stability and energy barrier for Li interlayer diffusion, it is found that the VSe2/MoSe2 heterostructure exhibits very low-energy barriers for Na/K interlayer diffusion (0.21 eV for Na and 0.11 eV for K). Compared with the VSe2/MoSe2 heterostructure, the V0.92Se1.84/MoSe2 heterostructure not only can still maintain a stable structure and metallic character but also has much lower energy barrier for Li interlayer diffusion (0.07 vs 0.48 eV). These discoveries also break new ground to eliminate the obstacles preventing Li+ diffusion in the interlayer of other heterostructure materials. Besides, both VSe2/MoSe2 and V0.92Se1.84/MoSe2 heterostructures have low average open-circuit voltage (OCV) values during Li/Na/K interlayer diffusion (1.07 V for V0.92Se1.84/MoSe2 vs Li+, 0.86 V for VSe2/MoSe2 vs Na+, and 0.54 V for VSe2/MoSe2 vs K+), such low OCV values are beneficial for anode materials with excellent electrochemical properties. The above findings offer a new route to design anode materials for Li/Na/K-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...