Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Herb Med ; 15(1): 57-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36875427

RESUMO

Objective: The content of saikosaponins in genus Bupleurum is increased with numbers of lateral root, but the genetic mechanisms are largely unknown. This study aims to identify the heme oxygenase (HO) gene family members of B. chinense and B. scorzonerifolium, and assess their role in the root development in Bupleurum. Methods: The gene sequences of HO family were selected from iso-seq full-length transcriptome data of B. chinense and B. scorzonerifolium, and were analyzed in physicochemical properties, conserved domains, motifs and phylogenetic relationship. In addition, the expression patterns of HO gene in different parts of roots were compared via transcriptome sequencing and qRT-PCR in the two species. Results: Five Bupleurum HO genes (BcHO1-BcHO5) belonging to the HO1 subfamily were identified from the transcriptome data, whereas the HO2 subfamily member was not identified. The expression levels of BcHO1 and BcHO2 were significantly higher than those of other three HO members in the transcriptome analysis. In addition, the expression profile of BcHO1 showed consistency with lateral root development in B. chinense and B. scorzonerifolium. Conclusion: Hos might participate in the auxin-induced morphogenesis of lateral roots. The yield of saikosaponin may be improved by manipulating expression of these genes.

2.
BMC Genomics ; 22(1): 839, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798822

RESUMO

BACKGROUND: Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. In the present study, we performed an integrated analysis of metabolic composition and the expressed genes involved in saikosaponin biosynthetic pathways among four organs (the root, flower, stem, and leaf) of B. chinense to discover the genes related to the saikosaponin biosynthetic pathway. RESULTS: Transcript and metabolite profiles were generated through high-throughput RNA-sequencing (RNA-seq) data analysis and liquid chromatography tandem mass spectrometry, respectively. Evaluation of saikosaponin contents and transcriptional changes showed 152 strong correlations (P < 0.05) over 3 compounds and 77 unigenes. These unigenes belonged to eight gene families: the acetoacetyl CoA transferase (AACT) (6), HMG-CoA synthase (HMGS) (2), HMG-CoA reductase (HMGR) (2), mevalonate diphosphate decarboxylase (MVD) (1), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) (3), farnesyl diphosphate synthase (FPPS) (11), ß-amyrin synthase (ß-AS) (13) and cytochrome P450 enzymes (P450s) (39) families. CONCLUSIONS: Our results investigated the diversity of the saikosaponin triterpene biosynthetic pathway in the roots, stems, leaves and flowers of B. chinese by integrated transcriptomic and metabolomic analysis, implying that manipulation of P450s genes such as Bc95697 and Bc35434 might improve saikosaponin biosynthesis. This is a good candidate for the genetic improvement of this important medicinal plant.


Assuntos
Bupleurum , Saponinas , Bupleurum/genética , Humanos , Metaboloma , Ácido Oleanólico/análogos & derivados , Raízes de Plantas , Transcriptoma
3.
Planta ; 253(6): 128, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037846

RESUMO

MAIN CONCLUSION: We identified IAA13 negatively associated with lateral root number by comparing the differential expressed genes between Bupleurum chinense and B. scorzonerifolium. Dried roots of the genus Bupleurum L. are used as a herbal medicine for diseases in Asia. Bupleurum chinense has a greater number of lateral roots than B. scorzonerifolium, but the genetic mechanisms for such differences are largely unknown. We (a) compared the transcriptome profiles of the two species and (b) identified a subset of candidate genes involved in auxin signal transduction and explored their functions in lateral root development. By isoform sequencing (Iso-Seq) analyses of the whole plant, more unigenes were found in B. scorzonerifolium (118,868) than in B. chinense (93,485). Given the overarching role of indole-3-acetic acid (IAA) as one of the major regulators of lateral root development, we identified 539 unigenes associated with auxin signal transduction. Fourteen and 44 unigenes in the pathway were differentially expressed in B. chinense and B. scorzonerifolium, respectively, and 3 unigenes (LAX2, LAX4, and IAA13) were expressed in both species. The number of lateral root primordia increased after exogenous auxin application at 8 h and 12 h in B. scorzonerifolium and B. chinense, respectively. Since overexpression of IAA13 in Arabidopsis reduced the number of lateral roots, we hypothesized that IAA13 is involved in the reduction of the number of lateral roots in B. scorzonerifolium.


Assuntos
Arabidopsis , Bupleurum , Plantas Medicinais , Ásia , Bupleurum/genética , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...