Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 139940, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870807

RESUMO

The MobileNetV3-based improved sine-cosine algorithm (ISCA-MobileNetV3) was combined with an artificial olfactory sensor (AOS) to address the redundancy in olfactory arrays, thereby achieving low-cost and high-precision detection of mycotoxin-contaminated maize. Specifically, volatile organic compounds of maize interacted with unoptimized AOS containing eight porphyrins and eight dye-attached nanocomposites to obtain the scent fingerprints for constructing the initial data set. The optimal decision model was MobileNetV3, with more than 98.5% classification accuracy, and its output training loss would be input into the optimizer ISCA. Remarkably, the number of olfactory arrays was reduced from 16 to 6 by ISCA-MobileNetV3 with about a 1% decrease in classification accuracy. Additionally, the developed system showed that each online evaluation was less than one second on average, demonstrating outstanding real-time performance for ensuring food safety. Therefore, AOS combined with ISCA-MobileNetV3 will encourage the development of an affordable and on-site platform for maize quality detection.


Assuntos
Contaminação de Alimentos , Micotoxinas , Zea mays , Zea mays/química , Micotoxinas/análise , Contaminação de Alimentos/análise , Compostos Orgânicos Voláteis/química , Algoritmos
3.
Nanoscale ; 15(32): 13437-13449, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37548042

RESUMO

Crops are constantly challenged by different environmental conditions. Seed treatment using nanomaterials is a cost-effective and environmentally friendly solution for environmental stress mitigation in crop plants. Here, 56 seed nanopriming treatments are used to alleviate environmental stresses in maize. Seven selected nanopriming treatments significantly increase the stress resistance index (SRI) by 13.9% and 12.6% under salinity stress and combined heat-drought stress, respectively. Metabolomics data reveal that ZnO nanopriming treatment, with the highest SRI value, mainly regulates the pathways of amino acid metabolism, secondary metabolite synthesis, carbohydrate metabolism, and translation. Understanding the mechanism of seed nanopriming is still difficult due to the variety of nanomaterials and the complexity of interactions between nanomaterials and plants. Using the nanopriming data, we present an interpretable structure-activity relationship (ISAR) approach based on interpretable machine learning for predicting and understanding its stress mitigation effects. The post hoc and model-based interpretation approaches of machine learning are integrated to provide complementary advantages and may yield more illuminating or trustworthy results for researchers or policymakers. The concentration, size, and zeta potential of nanoparticles are identified as dominant factors for correlating root dry weight under salinity stress, and their effects and interactions are explained. Additionally, a web-based interactive tool is developed for offering prediction-level interpretation and gathering more details about a specific nanopriming treatment. This work offers a promising framework for accelerating the agricultural applications of nanomaterials and may contribute to nanosafety assessment.


Assuntos
Nanopartículas , Nanoestruturas , Estresse Fisiológico , Sementes
4.
Meat Sci ; 194: 108950, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087368

RESUMO

Beef is easily spoiled, resulting in foodborne illness and high societal costs. This study proposed a novel olfactory visualization system based on colorimetric sensor array and chemometric methods to detect beef freshness. First, twelve color-sensitive materials were immobilized on a hydrophobic platform to acquire scent information of beef samples according to solvatochromic effects. Second, machine vision algorithms were used to extract the scent fingerprints, and principal component analysis (PCA) was employed to compress the feature dimensions of the fingerprints. Finally, four qualitative models, k-nearest neighbor, extreme learning machine, support vector machine (SVM), and random forest, were constructed to evaluate the beef freshness according to the value of total volatile basic nitrogen (TVB-N) and total viable counts (TVC). Results demonstrated that SVM had a preferable prediction ability, with 95.83% and 95.00% precision in the training and prediction sets, respectively. The results revealed that the simple constructed olfactory visualization sensor system could rapidly, robustly, and accurately assess beef freshness.


Assuntos
Quimiometria , Colorimetria , Animais , Bovinos , Algoritmos , Nitrogênio/análise , Algoritmo Florestas Aleatórias
5.
Compr Rev Food Sci Food Saf ; 21(4): 3647-3672, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794726

RESUMO

Fish is one of the highly demanded aquatic products, and its quality and safety play a pivotal role in daily diet. However, the possible hazardous substance in perishable fish both in pre- and postharvest periods may decrease their values and pose a threat to public health. Laborious and expensive traditional methods drive the need of developing effective tools for detecting fish quality and safety properties in a rapid, nondestructive, and effective manner. Recent advances in Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) have shown enormous potential in various aspects, which largely boost their applications in fish quality and safety evaluation. They have incomparable merits such as providing molecule fingerprint information and allowing for rapid, sensitive, and noninvasive detection with simple sample preparation. This review provides a comprehensive overview focusing on the applications of RS and SERS for fish quality assessment and safety inspection, highlighting the hazardous substance and illegal behavior both in preharvest (veterinary drug residues and environmental pollutants) and postharvest (freshness and illegal behavior) particularly. Moreover, challenges and prospects are also proposed to facilitate the vigorous development of RS and SERS. This review is aimed to emphasize potential opportunities for applying RS and SERS as promising techniques for routine food quality and safety detection. PRACTICAL APPLICATION: With these applications, it can be clearly indicated that RS and SERS are promising and powerful in fish quality and safety surveillance, thereby reducing the occurrence of commercial fraud and food safety issues. More efforts still should be concentrated on exploiting the high-performance Raman instruments, establishing a universal Raman database, developing reproducible SERS substrates and combing RS with other versatile spectral techniques to promote these technologies from laboratory to practice. It is hoped that this review should arouse more research interests in RS and SERS technologies for fish quality and safety surveillance, as well as provide more insights to make a breakthrough.


Assuntos
Poluentes Ambientais , Análise Espectral Raman , Animais , Qualidade dos Alimentos , Substâncias Perigosas , Análise Espectral Raman/métodos
6.
Front Neurol ; 12: 700732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512518

RESUMO

Objective: This work explores collateral circulation metrics, such as the anterior borderzone angle grading (ABZA-grading), as a predictor of the prognosis in patients with acute middle cerebral artery occlusion (MCAO) following endovascular treatment (EVT). Methods: Clinical data from 108 patients with acute MCAO, treated by EVT, were retrospectively analyzed. In patients with MCAO, ABZA is the angle between the median line of the sagittal sinus and the borderzone of the pial arterioles of ACA and MCA, and the ABZA/23.0° was rounded to obtain the corresponding collateral circulation score (ABZA-grading). In parallel, the primary outcome was defined as the 90-day clinical outcome by modified ranking scale score (mRS). Univariate analysis and logistic regression were used to analyze the independent predictors of the 90-day clinical outcome (mRS). Receiver operating characteristic curve (ROC) analysis was used to judge the predictive value of ABZA. Results: Univariate analysis and logistic regression analysis showed that ABZA-grading > 2 and age were independent predictors of the 90-day clinical outcome after EVT in patients with acute MCAO. The ROC analysis showed that ABZA alone could predict a favorable 90-day clinical outcome with an area under the curve (AUC) of 0.868. Using an ABZA of >57.8° (the corresponding ABZA-grading of >2) as the cut-off value, the predictive sensitivity and specificity were 75.7 and 88.7%, respectively. Contingency table analysis showed a statistical difference in mRS score between ABZA-grading subgroups, and ABZA-grading between stroke caused by large artery atherosclerosis (LAA) and cardiogenic embolism (CE). Conclusion: The ABZA-grading is an easy and objective assessment of collateral circulation that is independently associated with short-time clinical outcome after EVT in patients with acute MCAO. Therefore, it may guide selection of patients with acute ischemic stroke (AIS) suitable for EVT. The ABZA-grading of collateral circulation can be a supplemental metric to help differentiate stroke by LAA and CE.

7.
J Sci Food Agric ; 101(8): 3448-3456, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33270243

RESUMO

BACKGROUND: The edible oil storage period is one of the important indicators for evaluating the intrinsic quality of edible oil. The present study aimed to develop a portable electronic nose device for the qualitative identification of the edible oil storage period. First, four metal oxide semiconductor gas sensors, comprising TGS2600, TGS2611, TGS2620 and MQ138, were selected to prepare a sensor array to assemble a portable electronic nose device. Second, the homemade portable electronic nose device was used to obtain the odor change information of edible oil samples during different storage periods, and the sensor features were extracted. Finally, three pattern recognition methods, comprising linear discriminant analysis (LDA), K-nearest neighbors (KNN) and support vector machines (SVM), were compared to establish a qualitative identification model of the edible oil storage period. The input features and related parameters of the model were optimized by a five-fold cross-validation during the process of model establishment. RESULTS: The research results showed that the recognition performance of the non-linear SVM model was significantly better than that of the linear LDA and KNN models, especially in terms of generalization performance, which had a correct recognition rate of 100% when predicting independent samples in the prediction set. CONCLUSION: The overall results demonstrate that it is feasible to apply the homemade portable electronic nose device with the help of the appropriate pattern recognition methods to achieve the fast and efficient identification of the edible oil storage period, which provides an effective analysis tool for the quality detection of the edible oil storage. © 2020 Society of Chemical Industry.


Assuntos
Nariz Eletrônico , Análise de Alimentos/métodos , Óleos de Plantas/química , Análise Discriminante , Análise de Alimentos/instrumentação , Armazenamento de Alimentos , Análise Multivariada , Controle de Qualidade , Máquina de Vetores de Suporte
8.
J Sci Food Agric ; 101(8): 3328-3335, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222172

RESUMO

BACKGROUND: The acid value is an important indicator for evaluating the quality of edible oil during storage. This study employs a portable near-infrared (NIR) spectroscopy system to determine the acid value during edible oil storage. Four MPA-based variable selection methods, namely competitive adaptive reweighted sampling (CARS), the variable iterative space shrinkage approach (VISSA), iteratively variable subset optimization (IVSO), and bootstrapping soft shrinkage (BOSS) were introduced to optimize the preprocessed NIR spectra. Support vector machine (SVM) models based on characteristic spectra obtained by different selection methods were then established to achieve quantitative detection of the acid value during edible oil storage. RESULTS: The results revealed that, compared with the full-spectrum SVM model, the SVM models established by the characteristic wavelengths optimized by the variable selection methods based on the MPA strategy exhibit a significant improvement in complexity and generalization performance. Furthermore, compared with the CARS, VISSA, and IVSO methods, the BOSS method obtained the least number of characteristic wavelength variables, and the SVM model established based on the optimized features of this method exhibited the optimal prediction performance. The root mean square error of prediction (RMSEP) was 0.11 mg g-1, the coefficient of determination (Rp2) was 0.92 and the ratio performance deviation (RPD) was 2.82, respectively. CONCLUSION: The overall results indicate that the variable selection methods based on the MPA strategy can select more targeted characteristic variables. This has good application prospects in NIR spectra feature optimization. © 2020 Society of Chemical Industry.


Assuntos
Ácidos/análise , Análise de Alimentos/métodos , Óleos de Plantas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Armazenamento de Alimentos , Máquina de Vetores de Suporte
10.
Anal Methods ; 12(29): 3722-3728, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32729876

RESUMO

The actual storage period of edible oil is one of the important indicators of edible oil quality. A high-precision identification method based on the near-infrared (NIR) spectroscopy technique for the actual storage period of edible oil is proposed in this study. Firstly, a Fourier transform NIR (FT-NIR) spectrometer was used to collect NIR spectra of edible oil samples in different storage periods, and the obtained spectra were pretreated by standard normal transformation (SNV). Then, the characteristics of the pretreated spectra were analyzed by principal component analysis (PCA), and the spatial distribution of edible oil samples in different storage periods was visually presented using a PCA score plot. Finally, three pattern recognition methods, which were K-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were compared to establish a qualitative identification model of edible oil in different storage periods. The results showed that the recognition performance of the SVM model was significantly superior to that of the KNN and RF models, especially in terms of generalization performance, and the SVM model had a recognition rate of 100% when predicting independent samples in the prediction set. It is suggested that FT-NIR spectroscopy combined with appropriate chemometric methods is feasible to realize fast and high-precision identification of actual storage periods of edible oil and provided an effective analysis tool for edible oil storage quality detection.

11.
Nat Prod Res ; 34(14): 1957-1961, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30724606

RESUMO

Pholiotone A (1), a new polyketide derivative, with tetrahydrobenzofuran-4(2H)-one skeleton, together with four known compounds, trichodermatides A (2) and B (3) and koninginins B (4) and E (5), were isolated from the crude extract of Pholiota sp. The structures of all the isolated compounds were determined mainly by NMR experiments, the modified Mosher method and electronic circular dichroism (ECD) calculations. The antifungal and cytotoxicity of all isolates were evaluated.


Assuntos
Pholiota/química , Policetídeos/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Dicroísmo Circular , Citotoxinas/química , Citotoxinas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Policetídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...