Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608506

RESUMO

Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.


Assuntos
Cálcio , Solo , Cálcio/metabolismo , Produtos Agrícolas , Fertilizantes , Concentração de Íons de Hidrogênio , Fenômenos Fisiológicos Vegetais , Solo/química
2.
PLoS One ; 15(12): e0242620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270669

RESUMO

Wild species of Gossypium ssp. are an important source of traits for improving commercial cotton cultivars. Previous reports show that Gossypium herbaceum L. and Gossypium nelsonii Fryx. have better disease resistance characteristics than commercial cotton varieties. However, chromosome ploidy and biological isolation make it difficult to hybridize diploid species with the tetraploid Gossypium hirsutum L. We developed a new allotetraploid cotton genotype (A1A1G3G3) using a process of distant hybridization within wild cotton species to create new germplasms. First of all, G. herbaceum and G. nelsonii were used for interspecific hybridization to obtain F1 generation. Afterwards, apical meristems of the F1 diploid cotton plants were treated with colchicine to induce chromosome doubling. The new interspecific F1 hybrid and S1 cotton plants originated from chromosome duplication, were tested via morphological and molecular markers and confirmed their tetraploidy through flowrometric and cytological identification. The S1 tetraploid cotton plants was crossed with a TM-1 line and fertile hybrid offspring were obtained. These S2 offsprings were tested for resistance to Verticillium wilt and demonstrated adequate tolerance to this fungi. The results shows that the new S1 cotton line could be used as parental material for hybridization with G. hirsutum to produce pathogen-resistant cotton hybrids. This new S1 allotetraploid genotype will contributes to the enrichment of Gossypium germplasm resources and is expected to be valuable in polyploidy evolutionary studies.


Assuntos
Resistência à Doença/genética , Gossypium/anatomia & histologia , Gossypium/genética , Melhoramento Vegetal , Poliploidia , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Fibra de Algodão , Cruzamentos Genéticos , DNA de Plantas/genética , Fertilidade , Flores/anatomia & histologia , Genótipo , Gossypium/microbiologia , Repetições de Microssatélites/genética , Especificidade de Órgãos , Ploidias , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Verticillium/fisiologia
3.
Plants (Basel) ; 9(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861661

RESUMO

Potassium plays an important role in enhancing plant resistance to biological and abiotic stresses and improving fruit quality. To study the effect of potassium nutrient levels on banana root growth and its regulation mechanism, four potassium concentrations were designed to treat banana roots from no potassium to high potassium. The results indicated that K2 (3 mmol/L K2SO4) treatment was a relatively normal potassium concentration for the growth of banana root, and too high or too low potassium concentration was not conducive to the growth of banana root. By comparing the transcriptome data in each treatment in pairs, 4454 differentially expressed genes were obtained. There were obvious differences in gene function enrichment in root systems treated with different concentrations of potassium. Six significant expression profiles (profile 0, 1, 2, 7, 9 and 13) were identified by STEM analysis. The hub genes were FKF1, HsP70-1, NRT1/PTR5, CRY1, and ZIP11 in the profile 0; CYP51 in profile 1; SOS1 in profile 7; THA, LKR/SDH, MCC, C4H, CHI, F3'H, 2 PR1s, BSP, TLP, ICS, RO, chitinase and peroxidase in profile 9. Our results provide a comprehensive and systematic analysis of the gene regulation network in banana roots under different potassium stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...