Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134387, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723479

RESUMO

Microplastics (MPs) are distributed widely in the ocean surface waters and sediments. Increasing MPs contamination in intertidal zone profoundly impacts microbial ecosystem services and biogeochemical process. Little is known about the response of tidal sediment microbiome to MPs. We conducted a 30-day laboratory microcosm study using five polymers (PE, PBS, PC, PLA and PET) at three concentrations (1 %, 2 % and 5 %, w/w). High throughput sequencing of 16 S rRNA, qPCR and enzyme activity test were applied to demonstrate the response of microbial community and nitrogen cycling functional genes to MPs. MPs reduced the microbial alpha diversity and the microbial dissimilarity while the effects of PLA-MPs were concentration dependent. LEfSe analysis indicated that the Proteobacteria predominated for all MP treatments. Mantel's test, RDA and correlation analysis implied that pH may be the key environmental factor for causing microbial alterations. MPs enhanced nitrogen fixation in tidal sediment. PLA levels of 1 % but not 5 % produced the most significant effects in nitrogen cycling functional microbiota and genes. PLS-PM revealed that impacts of MPs on tidal sediment microbial communities and nitrogen cycling were dominated by indirect effects. Our study deepened understanding and filled the knowledge gap of MP contaminants affecting tidal sediment microbial nitrogen cycling.


Assuntos
Exposição Ambiental , Microbiota , Microplásticos , Ciclo do Nitrogênio , Polímeros , Microplásticos/química , Microplásticos/toxicidade , Polímeros/química , Polímeros/toxicidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ciclo do Nitrogênio/efeitos dos fármacos , Ciclo do Nitrogênio/genética , Microbiota/efeitos dos fármacos , Microbiota/genética , Biodiversidade , Concentração de Íons de Hidrogênio , Ondas de Maré
2.
Aging (Albany NY) ; 16(2): 1911-1924, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38271090

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a subtype of inflammatory bowel disease, which often leads to bloody diarrhea and abdominal pain. In this study, the function mechanism of Tongxie-Yaofang formula (TXYF) on UC was investigated. METHODS: Action targets of TXYF were obtained by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) databases. The targets of UC were screened in Gene Cards and Online Mendelian Inheritance in Man (OMIM) databases. The network pharmacology of active ingredient targets was established via Cytoscape. RESULTS: A total of 42 chemical components and 5806 disease targets were obtained. The GO functional analysis showed that biological processes such as oxidative stress and molecular response to bacteria, molecular function such as protein and nucleic acid binding activity were significantly enriched. The top 20 KEGG enriched signal pathways indicated that the targets were mainly linked with IL-17, TNF, HIF-1. Molecular docking results showed that naringenin had good binding activity between naringin and MAPK, albiflorin and SRC. The activity of MPO, the concentration of HIF-1, IL-17 and TNF-α were significantly decreased after TXYF treatment. The characteristics of UC such as crypt distortion, crypt atrophy, and increased basal plasmacytosis were also less observed with the treatment of TXYF. What's more, TXYF suppresses the phosphorylation of SRC, MAPK and AKT1 in UC. CONCLUSIONS: TXYF showed treatment effect on UC through multiple components and multiple targets, which lays a foundation for further study of UC treatment.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Humanos , Colite Ulcerativa/tratamento farmacológico , Interleucina-17 , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Transdução de Sinais
3.
J Hazard Mater ; 458: 131813, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339576

RESUMO

Microplastics (MPs) are 1-5 mm plastic particles that are serious global contaminants distributed throughout marine ecosystems. However, their impact on intertidal sediment microbial communities is poorly understood. In this study, we conducted a 30-day laboratory tidal microcosm experiment to investigate the effects of MPs on microbial communities. Specifically, we used the biodegradable polymers polylactic acid (PLA) and polybutylene succinate (PBS), as well as the conventional polymers polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE). Treatments with different concentrations (1-5%, w/w) of PLA- and PE-MPs were also included. We analyzed taxonomic variations in archaeal and bacterial communities using 16S rRNA high-throughput sequencing. PLA-MPs at concentrations of 1% (w/w) rapidly altered microbiome composition. Total organic carbon and nitrite nitrogen were the key physicochemical factors and urease was the major enzyme shaping MP-exposed sediment microbial communities. Stochastic processes predominated in microbial assembly and the addition of biodegradable MPs enhanced the contribution of ecological selections. The major keystone taxa of archaea and bacteria were Nitrososphaeria and Alphaproteobacteria, respectively. MPs exposure had less effect on archaeal functions while nitrogen cycling decreased in PLA-MPs treatments. These findings expanded the current understanding of the mechanism and pattern that MPs affect sediment microbial communities.


Assuntos
Microbiota , Microplásticos , Microplásticos/farmacologia , Plásticos , Archaea/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Poliésteres , Nitrogênio/farmacologia , Solo
4.
Ecotoxicol Environ Saf ; 250: 114492, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603487

RESUMO

Urbanization carries essential influences to ecosystem of soil bacteria in coastal cities. Comprehending the patterns and drivers of bacterial diversity are essential to understanding how soil ecosystems respond to environmental change. This study aimed to explore how soil bacterial community (SBC) response to distinct urbanization of coastal cities on composition, assembly process and potential function in Guangdong province, south China. 72 samples from 24 sample sites within 3 cities were included in the study. Soil chemical properties were analyzed, and the bacterial community were investigated by high-throughout sequencing. Proteobacteria and Acidobacteria were the main phyla. Assembly processes remained in stochastic processes and co-occurrence network of SBC kept stable, while urbanization altered SBC by influencing the dominant phyla. The indicators of communities in coastal city soils were the genera gamma_proteobacterium and beta_proteobacterium. Urbanized extent was the non-negligible factor which affected soil bacterial community, despite the total carbon was still the most vital. The impact of urbanization on bacterial communities might follow a non-linear pattern. Faprotax function prediction showed different urbanized coastal city soils share similar metabolic potential. Our study improved our understanding of the response of soil bacterial communities to urbanization in subtropical coastal cities and offered a useful strategy to monitor the ecology risk toward the soil under urbanization.


Assuntos
Ecossistema , Urbanização , Cidades , Solo/química , Microbiologia do Solo , Bactérias/genética , China
5.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805999

RESUMO

Epinephelus coioides is a fish species with high economic value due to its delicious meat, high protein content, and rich fatty acid nutrition. It has become a high-economic fish in southern parts of China and some other Southeast Asian countries. In this study, the myostatin nucleic acid vaccine was constructed and used to immunize E. coioides. The results from body length and weight measurements indicated the myostatin nucleic acid vaccine promoted E. coioides growth performance by increasing muscle fiber size. The results from RT-qPCR analysis showed that myostatin nucleic acid vaccine upregulated the expression of myod, myog and p21 mRNA, downregulated the expression of smad3 and mrf4 mRNA. This preliminary study is the first report that explored the role of myostatin in E. coioides and showed positive effects of autologous nucleic acid vaccine on the muscle growth of E. coioides. Further experiments with increased numbers of animals and different doses are needed for its application to E. coiodes aquaculture production.


Assuntos
Fibras Musculares Esqueléticas , Miostatina , Perciformes , Animais , Peso Corporal , Peixes , Regulação da Expressão Gênica , Fibras Musculares Esqueléticas/fisiologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miostatina/genética , Miostatina/imunologia , Vacinas Baseadas em Ácido Nucleico/administração & dosagem , Vacinas Baseadas em Ácido Nucleico/imunologia , Perciformes/crescimento & desenvolvimento , Perciformes/fisiologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Vacinação , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
6.
Nanomaterials (Basel) ; 11(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34685192

RESUMO

Microplastics (MPs) (including nanoplastics (NPs)) are pieces of plastic smaller than 5 mm in size. They are produced by the crushing and decomposition of large waste plastics and widely distributed in all kinds of ecological environments and even in organisms, so they have been paid much attention by the public and scientific community. Previously, several studies have reviewed the sources, occurrence, distribution, and toxicity of MPs in water and soil. By comparison, the review of atmospheric MPs is inadequate. In particular, there are still significant gaps in the quantitative analysis of MPs and the mechanisms associated with the toxic effects of inhaled MPs. Thus, this review summarizes and analyzes the distribution, source, and fate of atmospheric MPs and related influencing factors. The potential toxic effects of atmospheric MPs on animals and humans are also reviewed in depth. In addition, the common sampling and analysis methods used in existing studies are introduced. The aim of this paper is to put forward some feasible suggestions on the research direction of atmospheric MPs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...