Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Gen Med ; 15: 3951-3964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437351

RESUMO

Background: Aortic dissection (AD) is a rare and lethal disorder with its genetic basis remains largely unknown. Many studies have confirmed that circRNAs play important roles in various physiological and pathological processes. However, the roles of circRNAs in AD are still unclear and need further investigation. The present study aimed to elucidate the underlying molecular mechanisms of circRNAs regulation in AD based on the circRNA-associated competing endogenous RNA (ceRNA) network. Methods: Expression profiles of circRNAs (GSE97745), miRNAs (GSE92427), and mRNAs (GSE52093) were downloaded from Gene Expression Omnibus (GEO) databases, and the differentially expressed RNAs (DERNAs) were subsequently identified by bioinformatics analysis. CircRNA-miRNA-mRNA ceRNA network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict the potential functions of circRNA-associated ceRNA network. RNA was isolated from human arterial blood samples after which qRT-PCR was performed to confirm the DERNAs. Results: We identified 14 (5 up-regulated and 9 down-regulated) differentially expressed circRNAs (DEcircRNAs), 17 (8 up-regulated and 9 down-regulated) differentially expressed miRNAs (DEmiRNAs) and 527 (297 up-regulated and 230 down-regulated) differentially expressed mRNAs (DEmRNAs) (adjusted P-value <0.05 and | log2FC | > 1.0). KEGG pathway analysis indicated that DEmRNAs were related to focal adhesion and extracellular matrix receptor interaction signaling pathways. Simultaneously, the present study constructed a ceRNA network based on 1 circRNAs (hsa_circRNA_082317), 1 miRNAs (hsa-miR-149-3p) and 10 mRNAs (MLEC, ENTPD7, SLC16A3, SLC7A8, TBC1D16, PAQR4, MAPK13, PIK3R2, ITGA5, SERPINA1). qRT-PCR demonstrated that hsa_circRNA_082317 and ITGA5 were significantly up-regulated, and hsa-miR-149-3p was dramatically down-regulated in AD (n = 3). Conclusion: This is the first study to demonstrate the circRNA-associated ceRNA network is altered in AD, implying that circRNAs may play important roles in regulating the onset and progression and thus may serve as potential biomarkers for the diagnosis and treatment of AD.

2.
Cardiovasc Diagn Ther ; 11(5): 1025-1035, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34815953

RESUMO

BACKGROUND: Autophagy, a stress response in eukaryotic cells, is closely related to cardiogenic diseases. Pyroptosis, a newly discovered way of programmed cell death, also plays an important role in cardiovascular disease. However, the role and relationship of autophagy and pyroptosis in lipopolysaccharide (LPS)-induced inflammatory response of cardiomyocytes were still unclear. METHODS: Western blot was performed to determine the expression of poly ADP-ribosepolmesera-1 (PARP-1), LC3B, NLRP3 and GSDMD in cardiomyocytes after the treatment of LPS. Transfection of si-LC3B, western blot and immunofluorescence (IF) staining were performed to investigate the role of autophagy in LPS-induced pyroptosis. Co-immunoprecipitation (Co-IP) assays and quantitative real-time PCR (qRT-PCR) were conducted to explore whether PARP-1 binding to LC3B and modulating its expression. Transfections of si-PARP-1, western blot and IF were carried out to confirm the role of PARP-1 in the regulation of LPS-induced pyroptosis by autophagy. RESULTS: LPS induces autophagy and pyroptosis in cardiomyocytes, enhanced the level of autophagy and inhibited the level of pyroptosis in the concentration of 4 µg/mL. We further proved that autophagy inhibits LPS-induced pyroptosis in cardiomyocytes. In addition, PARP-1 binding to LC3B and regulate the expression of LC3B. Finally, we proved that knockdown of PARP-1 rescued the inhibition of autophagy on LPS-induced pyroptosis of cardiomyocytes. CONCLUSIONS: LPS induces pyroptosis through regulation of autophagy via PARP-1 at a specific concentration, above which it causes deposition of autophagy flow to promote pyroptosis. Inhibiting LPS-induced pyroptosis could be a promising therapeutic target in treating cardiovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...