Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 23(2): 293-300, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22586950

RESUMO

To understand the characteristics of soil respiration components and their temperature sensitivity in a Pleioblastus amarus plantation in the Rainy Area of West China, a one-year periodic monitoring was conducted in a fixed plot of the plantation from February 2010 to January 2011. In the plantation, the mean annual soil respiration rate was 1.13 micromol x m(-2) x s(-1), and the soil respiration presented a clear seasonal pattern, with the maximum rate in mid-summer and the minimum rate in late winter. The contribution rates of the respiration of litter layer, root-free soil, and root to the total soil respiration of the plantation accounted for 30.9%, 20.8% and 48.3%, respectively, and the respiration of the components had a similar seasonal pattern to the total soil respiration, being related to temperature and litterfall. The annual CO2 efflux from the total soil respiration, litter layer CO2 release, root-free soil CO2 release, and root respiration was 4.27, 1.32, 0.87 and 2.08 Mg C x hm(-2) x a(-1), respectively. The total soil respiration and its components had significant positive linear correlations with litterfall, and significant positive exponential correlations with air temperature and the soil temperature at depth 10 cm. The Q10 values of total soil respiration, litter layer CO2 release, root-free soil CO2 release, and root respiration calculated based on the soil temperature were 2.90, 2.28, 3.09 and 3.19, respectively, suggesting that the temperature sensitivity of litter layer CO2 release was significantly lower than that of the total soil respiration and of its other components.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Solo/análise , Ciclo do Carbono , China , Monitoramento Ambiental , Poaceae/crescimento & desenvolvimento , Chuva , Estações do Ano , Temperatura
2.
Ying Yong Sheng Tai Xue Bao ; 21(10): 2472-8, 2010 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-21328931

RESUMO

Fine root is critical in the belowground carbon (C) cycling in forest ecosystem. Aimed to understand the effects of nitrogen (N) deposition on the fine root characteristics and soil respiration in Pleioblastus amarus plantation, a two-year field experiment was conducted in the Rainy Area of West China. Four treatments with different levels of N deposition were installed, i. e., CK (0 g N x m(-2) x a(-1)), low N (5 g N x m(-2) x a(-1)), medium N (15 g N x m(-2) x a(-1)), and high N (30 g N x m(-2) x a(-1)). There were great differences in the biomass and element contents of <1 mm and 1-2 mm fine roots among the treatments. Comparing with < 1 mm fine roots, 1-2 mm fine roots had higher contents of lignin, P, and Mg, but lower contents of cellulose and Ca. Nitrogen deposition increased the biomass of < 2mm fine roots significantly, with the values being (533 +/- 89) g x m(-2) in CK, and (630 +/- 140), (632 +/- 168), and (820 +/- 161) g x m(-2) in treatments low N, medium N, and high N, respectively. The N, K, and Mg contents of <2 mm fine roots also had an obvious increase under N deposition. The annual soil respiration rate in treatments CK, low N, medium N, and high N was (5.85 +/- 0.43), (6.48 +/- 0.71), (6.84 +/- 0.57), and (7.62 +/- 0.55) t C x hm(-2) x a(-1), respectively, indicating that N deposition had obvious promotion effects on soil respiration. There were significant linear relationships between the annual soil respiration rate and the biomass and N content of <2 mm fine roots. N deposition increased the fine root biomass and promoted the root metabolism, and stimulated the rhizospheric soil respiration rate via promoting microbial activities.


Assuntos
Dióxido de Carbono/metabolismo , Nitrogênio/análise , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Solo/análise , Ciclo do Carbono , Simulação por Computador , Ecossistema , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...