Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(38): e2301513, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37116087

RESUMO

Parallel nanomaterials possess unique properties and show potential applications in industry. Whereas, vertically aligned 2D nanomaterials have plane orientations that are generally chaotic. Simultaneous control of their growth direction and spatial orientation for parallel nanosheets remains a big challenge. Here, a facile preparation of vertically aligned parallel nanosheet arrays of aluminum-cobalt oxide is reported via a collaborative dealloying and hydrothermal method. The parallel growth of nanosheets is attributed to the lattice-matching among the nanosheets, the buffer layer, and the substrate, which is verified by a careful transmission electron microscopy study. Furthermore, the aluminum-cobalt oxide nanosheets exhibit high-temperature ferromagnetism with a 919 K Curie temperature and a 5.22 emu g-1 saturation magnetization at 300 K, implying the potential applications in high-temperature ferromagnetic fields.

2.
Acta Crystallogr A Found Adv ; 77(Pt 5): 355-361, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473091

RESUMO

Quasicrystals have special crystal structures with long-range order, but without translational symmetry. Unexpectedly, carousel-like successive flippings of groups of atoms inside the ∼2 nm decagonal structural subunits of the decagonal quasicrystal Al60Cr20Fe10Si10 were directly observed using in situ high-temperature high-resolution transmission electron microscopy imaging. The observed directionally successive phason flips occur mainly clockwise and occasionally anticlockwise. The origin of these directional phason flips is analyzed and discussed.

3.
Nat Commun ; 11(1): 6209, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277472

RESUMO

A high-angle annular dark field scanning transmission electron microscopy study of the intermetallic compound Al74Cr15Fe11 reveals a quasiperiodic structure significantly differing from the ones known so far. In contrast to the common quasi-unit-cells based on Gummelt decagons, the present structure is related to a covering formed by Lück decagons, which can also be described by a Hexagon-Bow-Tie tiling.

4.
Acta Crystallogr A Found Adv ; 76(Pt 2): 137-144, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32124852

RESUMO

Quasicrystals, which have long-range orientational order without translational symmetry, are incompatible with the theory of conventional crystals, which are characterized by periodic lattices and uniformly repeated unit cells. Reported here is a novel quasicrystal-related solid state observed in two Al-Cr-Fe-Si alloys, which can be described as a mosaic of aperiodically distributed unit tiles in translationally periodic structural blocks. This new type of material possesses the opposing features of both conventional crystals and quasicrystals, which might trigger wide interest in theory, experiments and the potential applications of this type of material.

5.
ACS Appl Mater Interfaces ; 11(27): 24751-24756, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246392

RESUMO

A spintronic device based on the spin-dependent Hall effect has attracted great interest because of its great potential applications in the multivalue storage and logic gate, which is a promising candidate to break the bottleneck of the information industry in the big data period. It is a technological challenge to implant spintronic devices into semiconductor integrated circuits. The anomalous Hall angle (θ), defined as the deviation of the electron flow from the current direction, is the key parameter to evaluate the capacity of Hall device compatibility. However, the bottleneck for the device is low θ (less than 5%) at room temperature (RT), making it difficult to directly complement with the semiconductor circuit which limits its potential application. Here, we report a simple perpendicular multilayered structure with θ up to 5.1% at RT. Wide working temperature (250-350 K) across RT for our samples will accelerate the potential applications in spintronic memory. A giant Hall angle at RT originates from the enhanced side-jump scattering at the atomic-scale-modified interfacial structure. The high θ at RT together with wide working temperature is practically significant and may provide the way for further 3D spintronic devices based on the spin-dependent Hall effect with ultrahigh storage density and ultralow power consumption.

6.
Nanoscale ; 11(11): 4846-4853, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30816896

RESUMO

Hexagonal Si (2H polytype) has attracted great interest because of its unique physical properties and wide range of potential applications. For example, it might be used in heterojunctions based on hexagonal and cubic Si. Although hexagonal Si has been reported in Si nanowires, its existence is doubted because structural defects of diamond cubic Si can produce structural signals similar to those attributed to hexagonal Si. Here, through the use of atomic resolution high-angle annular dark-field scanning transmission electron microscopy imaging, we unambiguously report the coherent intergrowth of diamond cubic (3C polytype) and 2H hexagonal Si in Si nanowires grown by chemical vapor deposition. A model describing the intergrowth of 3C and 2H Si is proposed and the reasons for the generation of 2H Si are discussed in detail.

7.
Sci Rep ; 7: 40510, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084405

RESUMO

By means of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy, we found three types of giant approximants of decagonal quasicrystal in Al-Cr-Fe-Si alloys, where each type contains several structural variants possessing the same lattice parameters but different crystal structures. The projected structures of these approximants along the pseudo-tenfold direction were described using substructural blocks. Furthermore, the structural relationship and the plane crystallographic groups in the (a, c) plan of these structural variants was also discussed. The diversity of quasicrystal approximants with the same lattice parameters was shown to be closely related to the variety of shield-like tiles and their tiling patterns.

8.
ACS Appl Mater Interfaces ; 8(45): 31109-31119, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27775324

RESUMO

The electrostrictive effect has some advantages over the piezoelectric effect, including temperature stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 to 2 mol %. It is found that by introducing Fe3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum Tm was shifted toward lower temperature monotonically by 37 °C per mol % Fe3+ ion. Simultaneously, the phase transitions gradually changed from classical ferroelectric-to-paraelectric phase transitions into diffuse phase transitions with a weak relaxor characteristic. Purely electrostrictive responses with giant electrostrictive coefficient Q33 between 0.04 and 0.05 m4/C2 are observed from 25 to 100 °C for the compositions doped with 1-2 mol % Fe3+ ion. The Q33 of Fe3+-doped BZT-0.5BCT ceramics is almost twice the Q33 of other ferroelectric ceramics. These observations suggest that the present system can be considered as a potential lead-free material for the applications in electrostrictive area and that BT-based ferroelectric ceramics would have giant electrostrictive coefficient over other ferroelectric systems.

9.
Sci Rep ; 6: 22337, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928759

RESUMO

A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description.

10.
Phys Rev Lett ; 110(9): 097601, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496745

RESUMO

We report on a novel nonlinear optical phenomenon, coined as ciliary white light, during laser ablation of transparent dielectrics. It is observed in 14 different transparent materials including glasses, crystals, and polymers. This phenomenon is also universal with respect to laser polarization, pulse duration, and focusing geometry. We interpret its formation in terms of the nonlinear diffraction of the laser generated white light by the ablation crater covered by nanostructures. It carries rich information on the damage profile and morphology dynamics of the ablated surface, providing a real time in situ observation of the laser ablation process.

11.
Nanotechnology ; 22(8): 085601, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21242626

RESUMO

The synthesis of few-layered graphene is performed by ion implantation of carbon species in thin nickel films, followed by high temperature annealing and quenching. Although ion implantation enables a precise control of the carbon content and of the uniformity of the in-plane carbon concentration in the Ni films before annealing, we observe thickness non-uniformities in the synthesized graphene layers after high temperature annealing. These non-uniformities are probably induced by the heterogeneous distribution/topography of the graphene nucleation sites on the Ni surface. Taken altogether, our results indicate that the number of graphene layers on top of Ni films is controlled by the nucleation process on the Ni surface rather than by the carbon content in the Ni film.

12.
Inorg Chem ; 48(23): 11209-14, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19856951

RESUMO

The first layered iron borate, Fe(5)O(5)[B(6)O(10)(OH)(3)] x nH(2)O, has been prepared by the boric acid flux method. Its structure, determined by single crystal X-ray diffraction, contains a double FeO(6)-octahedral layer and an unusual [B(6)O(13)] chain. The rigid and cambered [B(6)O(13)] chains bend the octahedral layers, resulting in a wave-like and sandwiched structure. Crystallographic study indicates the structural modulation is mainly from the [B(6)O(13)] chains because of the insertion of water molecules in between. Nevertheless, FeO(6) layers in the average structure, which are well separated by borate chains, is still a reasonable model to understand the two-dimensional magnetism. The strong antiferromagnetic interactions and the complex Fe(3+)-net suggest a possible geometrically magnetic frustration, which may be the reason for the second-order temperature-induced magnetic transition at approximately 125 K. The condensed Fe(3+) layers and the relatively low redox potential at about 1.25 V versus Li(+)/Li show its potentials as an anodic material.

14.
Science ; 315(5815): 1113-6, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17322057

RESUMO

Despite substantial advances in crystal structure determination methodology for polycrystalline materials, some problems have remained intractable. A case in point is the zeolite catalyst IM-5, whose structure has eluded determination for almost 10 years. Here we present a charge-flipping structure-solution algorithm, extended to facilitate the combined use of powder diffraction and electron microscopy data. With this algorithm, we have elucidated the complex structure of IM-5, with 24 topologically distinct silicon atoms and an unusual two-dimensional medium-pore channel system. This powerful approach to structure solution can be applied without modification to any type of polycrystalline material (e.g., catalysts, ceramics, pharmaceuticals, complex metal alloys) and is therefore pertinent to a diverse range of scientific disciplines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...