Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1384991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800755

RESUMO

Introduction: Rapid identification of infected individuals through viral RNA or antigen detection followed by effective personal isolation is usually the most effective way to prevent the spread of a newly emerging virus. Large-scale detection involves mass specimen collection and transportation. For biosafety reasons, denaturing viral transport medium has been extensively used during the SARS-CoV-2 pandemic. However, the high concentrations of guanidinium isothiocyanate (GITC) in such media have raised issues around sufficient GITC supply and laboratory safety. Moreover, there is a lack of denaturing transport media compatible with SARS-CoV-2 RNA and antigen detection. Methods: Here, we tested whether supplementing media containing low concentrations of GITC with ammonium sulfate (AS) would affect the throat-swab detection of SARS-CoV-2 or a viral inactivation assay targeting coronavirus and other enveloped and non-enveloped viruses. The effect of adding AS to the media on RNA stability and its compatibility with SARS-CoV-2 antigen detection were also tested. Results and discussion: We found that adding AS to the denaturing transport media reduced the need for high levels of GITC, improved SARS-COV-2 RNA detection without compromising virus inactivation, and enabled the denaturing transport media compatible with SARS-CoV-2 antigen detection.

2.
Int J Biol Macromol ; 264(Pt 2): 130775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467210

RESUMO

There have been continuous quests for suitable solvents for starch, given the importance of effective starch dissolution in its modification and subsequent materials production. In light of this, the potential of hydroxyl-functionalized ionic liquid (IL) as a promising solvent for starch was investigated. Within this study, a hydroxyl-functionalized IL 1-(2,3-dihydroxypropyl)-3-methylimidazole chloride ([Dhpmim][Cl]) was synthesized, and the dissolution of starch in this IL and its aqueous solutions was examined. Starch (5.35 wt%) was completely dissolved in [Dhpmim][Cl] within 2 h at 100 °C. The solubility of starch in [Dhpmim][Cl]-water mixtures initially increased and then decreased with rising water content. The optimal ratio was found to be 1:9 (wt/wt) water:[Dhpmim][Cl], achieving the highest solubility at 9.28 wt%. Density functional theory (DFT) simulations elucidated the possible interactions between starch and solvents. After dissolution and regeneration in the 1:9 water:[Dhpmim][Cl] mixture, starch showed no discernible change in the molecular structure, with no derivatization reaction observed. Regenerated starch exhibited a transformation in crystalline structure from A-type to V-type, and its relative crystallinity (12.4 %) was lower than that of native starch (25.2 %), resulting in decreased thermal stability. This study suggests that the hydroxyl-functionalized IL, [Dhpmim][Cl], and its aqueous solutions serve as effective solvents for starch dissolution.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Amido/química , Imidazóis/química , Água/química , Solventes/química , Soluções , Solubilidade , Radical Hidroxila , Cloretos
3.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959740

RESUMO

This study explores the antifungal properties of Agaricus blazei Murrill, a valuable medicinal and edible fungus. Six compounds (1-6) were first isolated from A. blazei using various isolation techniques and identified using spectroscopic methods. These compounds include linoleic acid, 1,1'-oxybis(2,4-di-tert-butylbenzene), glycerol monolinoleate, volemolide (17R)-17-methylincisterol, (24s)-ergosta-7-en-3-ol, and dibutyl phthalate. This study also assesses the antifungal activities of these compounds against Trichophyton mentagrophology, Trichophyton rubrum, Candida albicans, and Cryptococcus neoformans. The results demonstrate varied sensitivities against these pathogenic fungi, with compound 2 showing significant inhibition against T. mentagrophology, compound 3 showing significant inhibition against T. rubrum, and compound 6 showing significant inhibition against C. albicans. This study underscores the medicinal potential of A. blazei as an antifungal agent and sheds light on its valuable research implications.


Assuntos
Agaricus , Antifúngicos , Antifúngicos/farmacologia , Agaricus/química , Candida albicans , Trichophyton
4.
Bioorg Chem ; 140: 106797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647807

RESUMO

Miliusanes are a class of anticancer lead molecules belonging to meroterpenoids with an 18-carbon skeleton isolated from Miliusa plants. A phytochemical study of the plant M. sinensis was carried out to discover new miliusanes with diverse structural features in order to better understand their structure-activity relationship. As a result, 20 compounds including 12 new ones (7-14 and 17-20) belonging to two sub-classes of miliusanes were isolated and identified from the twigs and leaves of this plant. Their structures, including absolute configurations, were determined by spectroscopic analyses and electronic circular dichroism. The absolute stereochemistry of miliusane structures has also been confirmed for the first time through the single crystal X-ray diffraction analysis of miliusol (1). Bioactivity evaluation showed that some of the miliusane isolates potently inhibit cell growth of several human derived cancer cell lines with IC50 values ranging from 0.52 to 23.5 µM. Compound 11 demonstrated more potent cytotoxic activity than the known miliusol (1) in stomach cancer cells though its structure contains an unconjugated 1, 4-diketone system, which added a new structure-activity feature to miliusanes. The preliminary mechanism of action studies revealed that they could be a class of dual cell migration inhibitor and senescence inducer.


Assuntos
Annonaceae , Humanos , Carbono , Ciclo Celular , Linhagem Celular
5.
Theranostics ; 13(2): 787-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632213

RESUMO

ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Epigênese Genética , Terapia de Alvo Molecular , Neoplasias , Humanos , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Front Microbiol ; 13: 908461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783394

RESUMO

In recent decades, infections caused by the opportunistic fungus Candida albicans have increased, especially in patients with immunodeficiency. In this study, we investigated the mechanism of action of sanguinarine (SAN) against C. albicans both in vitro and in vivo. SAN exhibited antifungal activity against C. albicans clinical isolates, with MICs in the range of 112.8-150.5 µM. Furthermore, scanning electron and transmission electron microscopy showed that SAN induced morphological changes as well as structure disruption in C. albicans cells, including masses of cellular debris, ruptured cell walls, and membrane deformation. Flow cytometry revealed that SAN could lead to cell membrane damage, and ergosterol content analysis indicated that SAN could cause ergosterol content reduction exceeding 90%. Further, we validated the efficacy of SAN against candidiasis caused by C. albicans in a murine model, and SAN significantly improved survival and reduced weight loss compared to vehicle. The treatment of 1.5 and 2.5 mg/kg/d SAN obviously reduced the fungal burden in the kidney. In addition, histopathological examination indicated that no fungal cells were observed in lung and kidney tissues after SAN treatment. Hence, this study suggests that SAN is a promising plant-derived compound for the development of an effective anticandidal agent.

7.
Front Immunol ; 13: 872958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432374

RESUMO

Chrysin has been proven to possess antiviral properties, but the precise underlying anti-influenza mechanism and its anti-influenza efficacy in vivo are largely unclear. In this study, we investigated the involvement of chrysin in the blockade of cell cycle and apoptosis in distinct cell lines subjected to two H1N1 influenza A virus (IAV) strains, as well as its anti-IAV activity in vivo. Here, we found an early unidentified finding that chrysin strongly impeded IAV replication through a mechanism that was autonomous of innate antiviral immune activation and viral protein interaction. Surprisingly, chrysin can suppress IAV-induced cell cycle arrest in the G0/G1 phase by downregulating the expression levels of P53 and P21 while promoting Cyclin D1/CDK4 and Cyclin E1/CDK2 activation. Furthermore, chrysin dramatically inhibited the IAV-triggered mitochondrial apoptotic pathway by altering the balance of Bax/Bcl-xl and reducing caspase-9 and caspase-3 activation. Accumulated reactive oxygen species (ROS) reduction may contribute to the inhibitory role of chrysin in cell cycle arrest and apoptosis following IAV infection. Notably, chrysin preferably inhibited IAV replication in the upper respiratory tract, indicating that it might be a promising drug for restraining the spread of respiratory viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Antivirais/metabolismo , Antivirais/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular , Flavonoides , Humanos , Vírus da Influenza A/fisiologia , Mitocôndrias/metabolismo
8.
Front Microbiol ; 13: 865644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308396

RESUMO

Hand foot and mouth disease (HFMD) caused by Enterovirus 71 (EV71) infection is still a major infectious disease threatening children's life and health in the absence of effective antiviral drugs due to its high prevalence and neurovirulence. A study of EV71-specific host response might shed some light on the reason behind its unique epidemiologic features and help to find means to conquer EV71 infection. We reported that host heat shock protein A6 (HSPA6) was induced by EV71 infection and involved infection in both Rhabdomyosarcoma (RD) cells and neurogliocytes. Most importantly, we found that EV71 did not induce the expression of other heat shock proteins HSPA1, HSPA8, and HSPB1 under the same conditions, and other HFMD-associated viruses including CVA16, CVA6, CVA10, and CVB1-3 did not induce the upregulation of HSPA6. In addition, EV71 infection enhanced the cytoplasmic aggregation of HSPA6 and its colocalization with viral capsid protein VP1. These findings suggest that HSPA6 is a potential EV71-specific host factor worthy of further study.

9.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268699

RESUMO

Previous studies have reported that recombinant tumor necrosis factor (TNF)-α has powerful antiviral activity but severe systematic side effects. Jasminin is a common bioactive component found in Chinese herbal medicine beverage "Jasmine Tea". Here, we report that jasminin-induced endogenous TNF-α showed antiviral activity in vitro. The underlying TNF-α-inducing action of jasminin was also investigated in RAW264.7 cells. The level of endogenous TNF-α stimulated by jasminin was first analyzed by an enzyme-linked immunosorbent assay (ELISA) from the cell culture supernatant of RAW264.7 cells. The supernatants were then collected to investigate the potential antiviral effect against herpes simplex virus 1 (HSV-1). The antiviral effects of jasminin alone or its supernatants were evaluated by a plaque reduction assay. The potential activation of the PI3K-Akt pathway, three main mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB signaling pathways that induce TNF-α production were also investigated. Jasminin induces TNF-α protein expression in RAW264.7 cells without additional stimuli 10-fold more than the control. No significant up-expression of type I, II, and III interferons; interleukins 2 and 10; nor TNF-ß were observed by the jasminin stimuli. The supernatants, containing jasminin-induced-TNF-α, showed antiviral activity against HSV-1. The jasminin-stimulated cells caused the simultaneous activation of the Akt, MAPKs, and NF-κB signal pathways. Furthermore, the pretreatment of the cells with the Akt, MAPKs, and NF-κB inhibitors effectively suppressed jasminin-induced TNF-α production. Our research provides evidence that endogenous TNF-α can be used as a strategy to encounter viral infections. Additionally, the Akt, MAPKs, and NF-κB signaling pathways are involved in the TNF-α synthesis that induced by jasminin.


Assuntos
Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa , Antivirais/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Food Chem ; 377: 131954, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34973591

RESUMO

An exopolysaccharide, designated as MM89-EPS, was isolated from Lactiplantibacillus plantarum MM89. It was comprised of glucose and mannose molecules with an average molecular weight of 138 kDa. FTIR and NMR spectra showed that MM89-EPS had characteristic polysaccharide functional groups. MM89-EPS displayed excellent water solubility and capacities to retain water and oil due to its porous structure. MM89-EPS exhibited no significant cytotoxicity on RAW264.7 cells and showed strong immunomodulatory activity by increasing phagocytosis, acid phosphatase activity, and cytokine production in RAW264.7 cells. Furthermore, an in vivo study revealed that splenic indices, intestinal IgA levels, serum cytokine levels, and lymphocyte proliferation were increased in an MM89-EPS-treated cyclophosphamide-induced immunosuppressed mouse model. To summarize, our results indicate that MM89-EPS can efficiently enhance the immunostimulatory activity of immune cells and an immunosuppressed mouse model. Hence, MM89-EPS may be use as a potential source of immunomodulatory agent in various food products.


Assuntos
Lactobacillus plantarum , Animais , Citocinas , Humanos , Camundongos , Leite Humano , Fagocitose , Polissacarídeos Bacterianos
11.
Nat Prod Res ; 36(4): 974-983, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33251874

RESUMO

Eleven compounds were isolated from methanol extract taken from Moringa oleifera seeds, including two previously unknown and nine known compounds. These compounds were authenticated as a carbamate, three phenylglycosides, four phenol glycosides, two nucleosides, and one flavonoid. Their chemical structures were elucidated using 1 D/2D nuclear magnetic resonance and high resolution-MS. Antivirus activity analyses revealed that Moringa A, glucomoringin, and Vitexin possessed strong inhibitory effects against the H1N1 virus, having IC50 values in the range of IC50 = 0.26 ± 0.03, 0.98 ± 0.17, and 3.42 ± 0.37 µg/mL, respectively. Furthermore, these three compounds could decrease the levels of TNF-α, IL-6, and IL-1ß, which occur in hosts because of H1N1 infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Moringa oleifera , Anti-Inflamatórios , Antivirais/farmacologia , Moringa oleifera/química , Extratos Vegetais/química , Sementes/química
12.
Crit Rev Food Sci Nutr ; 62(19): 5140-5166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33559482

RESUMO

The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Disbiose/tratamento farmacológico , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
13.
Viruses ; 15(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36680115

RESUMO

Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused by a group of enteroviruses. HFMD currently presents a major threat to infants and young children because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug discovery strategy aimed at identifying and developing new drugs for diseases. Notably, repositioning of well-characterized therapeutics, including either approved or investigational drugs, is becoming a potential strategy to identify new treatments for virus infections. Various types of drugs, including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD and the progress in drug repositioning to treat this disease. We also discuss the structural features and mode of action of these repositioned drugs and highlight the opportunities and challenges of drug repositioning for HFMD.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Criança , Lactente , Humanos , Pré-Escolar , Doença de Mão, Pé e Boca/tratamento farmacológico , Doença de Mão, Pé e Boca/epidemiologia , Reposicionamento de Medicamentos , Surtos de Doenças , China/epidemiologia
14.
Front Immunol ; 13: 1079415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726974

RESUMO

Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that is involved in the pathogenesis of inflammatory diseases and asthma, but the expression and biological implications of the existence of two isoforms, long TSLP (lTSLP) and short TSLP (sTSLP), in RA have yet to be elucidated. Here we report that lTSLP is the predominant TSLP isoform in RA and active RA, whereas sTSLP is the major TSLP isoform in inactive RA and healthy controls. lTSLP expression is associated with disease activity, including 28-joint Disease Activity Score (DAS28) and erythrocyte sedimentation rate (ESR), as well as proinflammatory cytokine expression, irrespective of other laboratory parameters. Importantly, lTSLP alone or combined with LPS promotes the expression of proinflammatory cytokines IL-1ß, IL-6, and IL-8 in PBMCs of RA, but restrains anti-inflammatory cytokine IL-10 expression in PBMCs of RA. Furthermore, we found that STAT5 signaling is involved in lTSLP-induced inflammatory accumulation in PBMCs of RA. Therefore, these results highlight the clinical significance of lTSLP in RA pathology and inflammatory response in acute-phase disease, which may provide a therapeutic target for RA.


Assuntos
Artrite Reumatoide , Asma , Humanos , Linfopoietina do Estroma do Timo , Citocinas/metabolismo , Artrite Reumatoide/metabolismo , Isoformas de Proteínas
15.
Front Oncol ; 11: 737323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858817

RESUMO

BACKGROUND: Modifying the structure of anti-tumor chemotherapy drug is of significance to enhance the specificity and efficacy of drug-delivery. A novel proteolysis resistant PD-L1-targeted peptide (PPA1) has been reported to bind to PD-L1 and disrupt the PD-1/PD-L1 interaction, thus appearing as an outstanding tumor-targeting modification of synergistic drug conjugate for effective anti-tumor treatment. However, the combination regimen of coupling PD-L1 polypeptide with chemotherapeutic drug in tumoricidal treatment has not been reported thus far. METHODS: We developed a novel synergistic strategy by conjugating PPA1 to doxorubicin (DOX) with a pH sensitive linker that can trigger the release of DOX near acidic tumor tissues. The binding affinity of PPA1-DOX with PD-L1 and the acid-sensitive cleavage of PPA1-DOX were investigated. A mouse xenograft model of colon cancer was used to evaluate the biodistribution, cytotoxicity and anti-tumor activity of PPA1-DOX. RESULTS: PPA1-DOX construct showed high binding affinity with PD-L1 in vitro and specifically enriched within tumor when administered in vivo. PPA1-DOX exhibited a significantly lower toxicity and a remarkably higher antitumor activity in vivo, as compared with free PPA1, random polypeptide-DOX conjugate, DOX, or 5-FU, respectively. Moreover, increased infiltration of both CD4+ and CD8+ T cells was found in tumors from PPA1-DOX treated mice. CONCLUSIONS: We describe here for the first time that the dual-functional conjugate PPA1-DOX, which consist of the PD-L1-targeted polypeptide that renders both the tumor-specific drug delivery and inhibitory PD-1/PD-L1 immune checkpoint inhibition, and a cytotoxic agent that is released and kills tumor cells once reaching tumor tissues, thus representing a promising therapeutic option for colon cancer with improved efficacy and reduced toxicity.

16.
Front Pharmacol ; 12: 630834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234668

RESUMO

Viral pneumonia has been a serious threat to global health, especially now we have dramatic challenges such as the COVID-19 pandemic. Approximately six million cases of community-acquired pneumonia occur every year, and over 20% of which need hospital admission. Influenza virus, respiratory virus, and coronavirus are the noteworthy causative agents to be investigated based on recent clinical research. Currently, anaphylactic reaction and inflammation induced by antiviral immunity can be incriminated as causative factors for clinicopathological symptoms of viral pneumonia. In this article, we illustrate the structure and related infection mechanisms of these viruses and the current status of antiviral therapies. Owing to a set of antiviral regiments with unsatisfactory clinical effects resulting from side effects, genetic mutation, and growing incidence of resistance, much attention has been paid on medicinal plants as a natural source of antiviral agents. Previous research mainly referred to herbal medicines and plant extracts with curative effects on viral infection models of influenza virus, respiratory virus, and coronavirus. This review summarizes the results of antiviral activities of various medicinal plants and their isolated substances, exclusively focusing on natural products for the treatment of the three types of pathogens that elicit pneumonia. Furthermore, we have introduced several useful screening tools to develop antiviral lead compounds.

17.
Food Chem ; 362: 130231, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237653

RESUMO

The silkworm (Bombyx mori) is an important economic insect that can be used as food in many countries in Asia. However, silkworms and their metabolites are an important source of allergens, which can induce severe allergic reactions. So far, there are no systematic studies on the potential allergens in silkworm and its metabolites. These studies have important guiding significance for the prevention, diagnosis, and treatment of silkworm allergy. The aim of this study was to identify the potential allergens from larva, pupa, moth, silk, slough and feces of silkworm and analyze the sequence homology of silkworm allergens with other allergens identified in the Allergenonline database. We have found 45 potential allergens in silkworm. The results of the homology comparison suggested that silkworm allergens likely cross-react with those of Dermatophagoides farinae, Aedes aegypti, Tyrophagus putrescentiae, Triticum aestivum and Malassezia furfur.


Assuntos
Alérgenos/análise , Bombyx/química , Proteínas de Insetos/química , Alérgenos/metabolismo , Animais , Ásia , Bombyx/crescimento & desenvolvimento , Reações Cruzadas , Fezes/química , Hipersensibilidade , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Larva/química , Mariposas/química , Pupa/química , Seda/química
18.
Viruses ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203182

RESUMO

Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Agentes de Imunomodulação/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Produtos Biológicos/química , Humanos , Agentes de Imunomodulação/isolamento & purificação , Camundongos , Viroses/tratamento farmacológico , Replicação Viral/efeitos dos fármacos
19.
Int J Biol Macromol ; 184: 144-158, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089759

RESUMO

Wound healing is a complicated process that influences patient's life quality. Plant-based polysaccharide has recently gained interest in its use in wound dressing materials because of its biological compatibility, natural abundance, and ideal physiochemical properties. The present study reveals the potential of polysaccharide isolated from Moringa oleifera seed (MOS-PS) and its nanocomposite with silver (MOS-PS-AgNPs) as alternative materials for wound dressing. First, MOS-PS was isolated and structurally characterized by TLC, HPLC, FTIR, NMR, and GPC analyses. A green and simple method was used to synthesize AgNPs using MOS-PS as a stabilizing and reducing agent. The size, morphology, and structure of the MOS-PS-AgNPs were characterized by UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The results showed that the MOS-PS-AgNPs were spherically shaped, having no cytotoxicity toward mouse fibroblasts cells and promoting their in-vitro migration. Moreover, the MOS-PS-AgNPs displayed strong anti-microbial activity against wound infectious pathogenic bacteria. Finally, the MOS-PS-AgNPs were used for dressing animal wounds and its preliminary mechanism was studied by RT-PCR and histological analysis. The results showed that the MOS-PS-AgNPs can promote wound contraction and internal tissue growth well. Overall, our results indicated that the MOS-PS-AgNPs might be an excellent candidate for use as an optimal wound dressing material.


Assuntos
Antibacterianos/administração & dosagem , Moringa oleifera/química , Polissacarídeos/química , Prata/administração & dosagem , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bandagens , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Química Verde , Masculino , Nanopartículas Metálicas , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos , Tamanho da Partícula , Extratos Vegetais/química , Ratos , Sementes/química , Prata/química , Prata/farmacologia , Cicatrização
20.
Pharmacol Res ; 168: 105580, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781874

RESUMO

Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.


Assuntos
Ferroptose/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Suplementos Nutricionais , Humanos , Ferro/metabolismo , Ácido Mevalônico/metabolismo , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...