Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(3): 722-737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37915111

RESUMO

Carotenoids contribute to fruit coloration and are valuable sources of provitamin A in the human diet. Abscisic acid (ABA) plays an essential role in fruit coloration during citrus fruit ripening, but little is known about the underlying mechanisms. Here, we identified a novel bZIP transcription activator called CsbZIP44, which serves as a central regulator of ABA-mediated citrus carotenoid biosynthesis. CsbZIP44 directly binds to the promoters of four carotenoid metabolism-related genes (CsDXR, CsGGPPs, CsBCH1 and CsNCED2) and activates their expression. Furthermore, our research indicates that CsHB5, a positive regulator of ABA and carotenoid-driven processes, activates the expression of CsbZIP44 by binding to its promoter. Additionally, CsHB5 interacts with CsbZIP44 to form a transcriptional regulatory module CsHB5-CsbZIP44, which is responsive to ABA induction and promotes carotenoid accumulation in citrus. Interestingly, we also discover a positive feedback regulation loop between the ABA signal and carotenoid biosynthesis mediated by the CsHB5-CsbZIP44 transcriptional regulatory module. Our findings show that CsHB5-CsbZIP44 precisely modulates ABA signal-mediated carotenoid metabolism, providing an effective strategy for quality improvement of citrus fruit and other crops.


Assuntos
Ácido Abscísico , Citrus , Humanos , Ácido Abscísico/metabolismo , Citrus/genética , Regulação da Expressão Gênica de Plantas/genética , Carotenoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Hortic Res ; 10(11): uhad199, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023480

RESUMO

Carotenoids directly influence citrus fruit color and nutritional value, which is critical to consumer acceptance. Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance for improving fruit quality. Despite the well-established carotenoid biosynthetic pathways, the molecular regulatory mechanism underlying carotenoid metabolism remains poorly understood. Our previous studies have reported that the Myc-type basic helix-loop-helix (bHLH) transcription factor (TF) regulates citrus proanthocyanidin biosynthesis. Transgenic analyses further showed that overexpression of CsTT8 could significantly promote carotenoid accumulation in transgenic citrus calli, but its regulatory mechanism is still unclear. In the present study, we found that overexpression of CsTT8 enhances carotenoid content in citrus fruit and calli by increasing the expression of CsDXR, CsHDS, CsHDR, CsPDS, CsLCYE, CsZEP, and CsNCED2, which was accompanied by changes in the contents of abscisic acid and gibberellin. The in vitro and in vivo assays indicated that CsTT8 directly bound to the promoters of CsDXR, CsHDS, and CsHDR, the key metabolic enzymes of the methylerythritol 4-phosphate (MEP) pathway, thus providing precursors for carotenoid biosynthesis and transcriptionally activating the expression of these three genes. In addition, CsTT8 activated the promoters of four key carotenoid biosynthesis pathway genes, CsPDS, CsLCYE, CsZEP, and CsNCED2, directly promoting carotenoid biosynthesis. This study reveals a novel network of carotenoid metabolism regulated by CsTT8. Our findings will contribute to manipulating carotenoid metabolic engineering to improve the quality of citrus fruit and other crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...