Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 1010102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452328

RESUMO

Introduction: Musculoskeletal system gradually degenerates with aging, and a hypoxia environment at a high altitude may accelerate this process. However, the comprehensive effects of high-altitude environments on bones and muscles remain unclear. This study aims to compare the differences in bones and muscles at different altitudes, and to explore the mechanism and influencing factors of the high-altitude environment on the skeletal muscle system. Methods: This is a prospective, multicenter, cohort study, which will recruit a total of 4000 participants over 50 years from 12 research centers with different altitudes (50m~3500m). The study will consist of a baseline assessment and a 5-year follow-up. Participants will undergo assessments of demographic information, anthropomorphic measures, self-reported questionnaires, handgrip muscle strength assessment (HGS), short physical performance battery (SPPB), blood sample analysis, and imaging assessments (QCT and/or DXA, US) within a time frame of 3 days after inclusion. A 5-year follow-up will be conducted to evaluate the changes in muscle size, density, and fat infiltration in different muscles; the muscle function impairment; the decrease in BMD; and the osteoporotic fracture incidence. Statistical analyses will be used to compare the research results between different altitudes. Multiple linear, logistic regression and classification tree analyses will be conducted to calculate the effects of various factors (e.g., altitude, age, and physical activity) on the skeletal muscle system in a high-altitude environment. Finally, a provisional cut-off point for the diagnosis of sarcopenia in adults at different altitudes will be calculated. Ethics and dissemination: The study has been approved by the institutional research ethics committee of each study center (main center number: KHLL2021-KY056). Results will be disseminated through scientific conferences and peer-reviewed publications, as well as meetings with stakeholders. Clinical Trial registration number: http://www.chictr.org.cn/index.aspx, identifier ChiCTR2100052153.


Assuntos
Osteoporose , Sarcopenia , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Estudos de Coortes , Estudos Longitudinais , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Altitude , Força da Mão , Estudos Prospectivos , China/epidemiologia , Osteoporose/diagnóstico , Osteoporose/epidemiologia , Projetos de Pesquisa , Estudos Multicêntricos como Assunto
2.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788806

RESUMO

The progression of animal development from embryonic to juvenile life depends on the coordination of organism-wide responses with environmental conditions. We found that two transcription factors that function in interneuron differentiation in Caenorhabditis elegans, fax-1, and unc-42, are required for arousal and progression from embryogenesis to larval life by potentiating insulin signaling. The combination of mutations in either transcription factor and a mutation in daf-2 insulin receptor results in a novel perihatching arrest phenotype; embryos are fully developed but inactive, often remaining trapped within the eggshell, and fail to initiate pharyngeal pumping. This pathway is opposed by an osmotic sensory response pathway that promotes developmental arrest and a sleep state at the end of embryogenesis in response to elevated salt concentration. The quiescent state induced by loss of insulin signaling or by osmotic stress can be reversed by mutations in genes that are required for sleep. Therefore, countervailing signals regulate late embryonic arousal and developmental progression to larval life, mechanistically linking the two responses. Our findings demonstrate a role for insulin signaling in an arousal circuit, consistent with evidence that insulin-related regulation may function in control of sleep states in many animals. The opposing quiescent arrest state may serve as an adaptive response to the osmotic threat from high salinity environments.


Assuntos
Caenorhabditis elegans , Animais
3.
Nanoscale ; 11(36): 17018-17030, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31502627

RESUMO

Targeting is vital for precise positioning and efficient therapy, and integrated platforms for diagnosis and therapy have attracted more and more attention. Herein, we established dual-template molecularly imprinted polymer (MIP) coated fluorescent silicon nanoparticles (Si NPs) by using the linear peptide of the extracellular region of human epidermal growth factor receptor-2 (HER2) and adopting doxorubicin (DOX) as templates for targeted imaging and targeted therapy. Benefiting from the epitope imprinting approach, the imprinted sites generated by peptides on the MIP surface can be employed for recognizing the corresponding protein, which allowed the MIP to specifically and actively target HER2-positive breast cancer cells. Because of its ability to identify breast cancer cells, the MIP was applied for targeted fluorescence imaging by taking advantage of the excellent fluorescence properties of Si NPs, and the DOX-loaded MIP (MIP@DOX) can act as a therapeutic probe to effectively target and kill breast cancer cells. In fluorescence images, the targeting of the MIP promoted more uptake of the nanoparticles by cells than the non-imprinted polymer (NIP), so HER2-positive breast cancer cells incubated with the MIP exhibited stronger fluorescence, and there was no significant difference in fluorescence when HER2-negative cells and normal cells were respectively hatched with the MIP and NIP. Importantly, the cell viability was evaluated to demonstrate targeted accumulation and therapy of MIP@DOX for breast cancer cells. The nanoplatform for diagnosis and therapy combined the high sensitivity of fluorescence with the high selectivity of the molecular imprinting technique, which holds vital potential in targeted imaging and targeted therapy in vitro.


Assuntos
Neoplasias da Mama , Materiais Revestidos Biocompatíveis , Doxorrubicina , Sistemas de Liberação de Medicamentos , Epitopos , Nanopartículas , Imagem Óptica , Receptor ErbB-2/metabolismo , Silício , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Epitopos/química , Epitopos/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Silício/química , Silício/farmacologia
4.
PLoS One ; 6(7): e22677, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799932

RESUMO

Transcriptional control of gene regulation is an intricate process that requires precise orchestration of a number of molecular components. Studying its evolution can serve as a useful model for understanding how complex molecular machines evolve. One way to investigate evolution of transcriptional regulation is to test the functions of cis-elements from one species in a distant relative. Previous results suggested that few, if any, tissue-specific promoters from Drosophila are faithfully expressed in C. elegans. Here we show that, in contrast, promoters of fly and human heat-shock genes are upregulated in C. elegans upon exposure to heat. Inducibility under conditions of heat shock may represent a relatively simple "on-off" response, whereas complex expression patterns require integration of multiple signals. Our results suggest that simpler aspects of regulatory logic may be retained over longer periods of evolutionary time, while more complex ones may be diverging more rapidly.


Assuntos
Evolução Molecular , Resposta ao Choque Térmico/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Humanos , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Transcrição Gênica
5.
Curr Biol ; 16(5): 530-5, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16527750

RESUMO

Short interfering RNAs (siRNAs) guide mRNA cleavage during RNA interference (RNAi). Only one siRNA strand assembles into the RNA-induced silencing complex (RISC), with preference given to the strand whose 5' terminus has lower base-pairing stability. In Drosophila, Dcr-2/R2D2 processes siRNAs from longer double-stranded RNAs (dsRNAs) and also nucleates RISC assembly, suggesting that nascent siRNAs could remain bound to Dcr-2/R2D2. In vitro, Dcr-2/R2D2 senses base-pairing asymmetry of synthetic siRNAs and dictates strand selection by asymmetric binding to the duplex ends. During dsRNA processing, Dicer (Dcr) liberates siRNAs from dsRNA ends in a manner dictated by asymmetric enzyme-substrate interactions. Because Dcr-2/R2D2 is unlikely to sense base-pairing asymmetry of an siRNA that is embedded within a precursor, it is not clear whether processed siRNAs strictly follow the thermodynamic asymmetry rules or whether processing polarity can affect strand selection. We use a Drosophila in vitro system in which defined siRNAs with known asymmetry can be generated from longer dsRNA precursors. These dsRNAs permit processing specifically from either the 5' or the 3' end of the thermodynamically favored strand of the incipient siRNA. Combined dsRNA-processing/mRNA-cleavage assays indicate that siRNA strand selection is independent of dsRNA processing polarity during Drosophila RISC assembly in vitro.


Assuntos
Drosophila/genética , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Pareamento de Bases/genética , Proteínas de Drosophila/metabolismo , Modelos Genéticos , Óvulo/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III , Termodinâmica
7.
Cell ; 117(1): 69-81, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15066283

RESUMO

The RNase III enzyme Dicer processes RNA into siRNAs and miRNAs, which direct a RNA-induced silencing complex (RISC) to cleave mRNA or block its translation (RNAi). We have characterized mutations in the Drosophila dicer-1 and dicer-2 genes. Mutation in dicer-1 blocks processing of miRNA precursors, whereas dicer-2 mutants are defective for processing siRNA precursors. It has been recently found that Drosophila Dicer-1 and Dicer-2 are also components of siRNA-dependent RISC (siRISC). We find that Dicer-1 and Dicer-2 are required for siRNA-directed mRNA cleavage, though the RNase III activity of Dicer-2 is not required. Dicer-1 and Dicer-2 facilitate distinct steps in the assembly of siRISC. However, Dicer-1 but not Dicer-2 is essential for miRISC-directed translation repression. Thus, siRISCs and miRISCs are different with respect to Dicers in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Anormalidades do Olho/genética , MicroRNAs/genética , RNA Helicases/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , Ribonuclease III/metabolismo , Animais , Proteínas de Drosophila/genética , Feminino , Masculino , MicroRNAs/metabolismo , Dados de Sequência Molecular , Mutação/genética , Biossíntese de Proteínas/genética , Estrutura Terciária de Proteína/fisiologia , RNA Helicases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...