Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 902: 174100, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878335

RESUMO

Tectochrysin, a flavonoid compound, can be isolated from propolis, Alpinia oxyphylla Miq, and Lychnophora markgravii. This study evaluated the efficacy of tectochrysin in the treatment of shrimp tropomyosin (ST)-induced mouse asthma. Mice were sensitized with intraperitoneal (i.p.) injection of ST together with aluminum hydroxide as an adjuvant to establish a mouse model of asthma. Mice were i.p.-treated daily with tectochrysin. IgE levels in plasma, Th2 cytokines from both bronchoalveolar lavage (BAL) fluid and splenocytes, and CD200R on basophils in peripheral blood were measured. Histological analyses of lung tissues and accumulation of leukocytes in BAL fluid were performed. Lung eosinophil peroxidase, catalase and glutathione peroxidase activities were examined. ST was found to markedly increase eosinophilic inflammation and Th2 response in mice. Tectochrysin treatment reduced the level of IgE in plasma, the percentage of eosinophils in total white blood cells in peripheral blood, the total number of cells in BAL fluid, and eosinophil peroxidase activity in lung tissues. Tectochrysin attenuated ST-induced infiltration of eosinophils and epithelial mucus secretion in lung tissues and suppressed the overproduction of Th2 cytokines (IL-4 and IL-5) in BAL fluid. Tectochrysin also attenuated Th2 cytokine (IL-4 and IL-5) production from antigen-stimulated murine splenocytes in vitro, decreased the expression of CD200R on basophils in peripheral blood of asthmatic mice and inhibited IL-4 secretion from IgE-sensitized RBL-2H3 cells. In addition, tectochrysin enhanced catalase and glutathione peroxidase activities in lung tissues. Our findings demonstrate that TEC ameliorates allergic airway inflammation by suppressing Th2 response and oxidative stress.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Asma/tratamento farmacológico , Flavonoides/farmacologia , Hipersensibilidade/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Células Th2/imunologia , Alérgenos/imunologia , Animais , Antiasmáticos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Basófilos/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Eosinófilos/metabolismo , Feminino , Flavonoides/administração & dosagem , Glutationa Peroxidase/metabolismo , Hipersensibilidade/imunologia , Imunoglobulina E/sangue , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Muco/efeitos dos fármacos , Hipersensibilidade a Frutos do Mar/tratamento farmacológico , Hipersensibilidade a Frutos do Mar/imunologia , Tropomiosina/imunologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-35528830

RESUMO

Background: Huangkui capsule (HKC) comprises the total flavonoid extract of flowers of Abelmoschus manihot (L.) Medicus. This study aimed to explore the effects of HKC on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and LPS-stimulated RAW 264.7 cells. Methods: Enzyme-linked immunosorbent assay, histopathology, spectrophotometry, and quantitative real-time polymerase chain reaction were used for the assessments. Statistical analysis was performed using a one-way analysis of variance. Results: LPS significantly increased lung inflammation, neutrophil infiltration, and oxidative stress and downregulated lung miR-451 expression. Treatment with HKC dramatically, reduced the total cell count in the bronchoalveolar lavage fluid (BALF), and inhibited myeloperoxidase activity in the lung tissues 24 h after LPS challenge. Histopathological analysis demonstrated that HKC attenuated LPS-induced tissue oedema and neutrophil infiltration in the lung tissues. Additionally, the concentrations of tumour necrosis factor- (TNF-) α and interleukin- (IL-) 6 in BALF and IL-6 in the plasma reduced after HKC administration. Moreover, HKC could enhance glutathione peroxidase and catalase activities and upregulate the expression of miR-451 in the lung tissues. In vitro experiments revealed that HKC inhibited the production of nitric oxide, TNF-α, and IL-6 in LPS-induced RAW 264.7 cells and mouse primary peritoneal macrophages. Additionally, HKC downregulated LPS-induced transcription of TNF-α and IL-6 in RAW 264.7 cells. Conclusions: These findings suggest that HKC has anti-inflammatory and antioxidative effects that may protect mice against LPS-induced ALI and macrophage activation.

3.
Int Immunopharmacol ; 91: 107289, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33370683

RESUMO

Allergic asthma remains an important worldwide health issue. Animal models are valuable for understanding the pathophysiological mechanisms of asthma and the development of effective therapeutics. This study aims to develop an alternative murine model induced by shrimp tropomyosin (ST) instead of ovalbumin (OVA). To investigate responses to short-term exposure to antigens, mice were sensitized with intraperitoneal injections of ST or ST plus aluminum adjuvant on days 0, 7, 14 followed by an intranasal challenge with ST for seven consecutive days. We reveal that sensitization with ST alone or ST plus aluminum induces significant levels of serum total IgE and ST-specific IgE in mice. Challenge results show that ST causes severe eosinophilic airway inflammation. Histology analysis of the lung tissues demonstrates airway inflammation and mucus hypersecretion within the bronchi in mice exposed to ST. Analysis of the cell composition in bronchoalveolar lavage fluid (BALF) shows a significant increase in eosinophil count in ST alone and ST plus aluminum groups. We also detect increased CD4+ T lymphocytes in lung tissues and production of helper T cell type 2-associated cytokines (IL-4 and IL-5) in BALF. In addition, airway hyperresponsiveness to methacholine in ST alone and ST plus aluminum groups is much higher than that in control groups. For the chronic model, mice were sensitized by ST or ST plus aluminum adjuvant for 3weeks and challenged with ST for 6weeks. We find severe structural changes in animals upon prolonged exposure to ST, including goblet cell hyperplasia, collagen deposition, and smooth muscle thickening. In conclusion, ST-induced asthma is a simple murine model for studying pathogenesis of asthma and evaluating new therapeutic drugs.


Assuntos
Alérgenos , Asma/induzido quimicamente , Hiper-Reatividade Brônquica/induzido quimicamente , Pulmão/imunologia , Penaeidae/imunologia , Tropomiosina , Adjuvantes Imunológicos , Animais , Asma/imunologia , Asma/metabolismo , Asma/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstrição , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imunoglobulina E/sangue , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...