Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Trends ; 17(6): 503-507, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38072446

RESUMO

The main technological difficulties of developing an intracellular (transmembrane) transport system for protein drugs lie in two points: i) overcoming the barriers in the cellular membrane, and ii) loading enough protein drugs, and particularly high-dose proteins, into particles. To address these two technological problems, we recently developed a novel cholesterol tag (C-Tag)-based transmembrane transport system. This pilot study found that the C-Tag dramatically improved the cellular uptake of Fab (902-fold, vs. Fab alone) into living cells, indicating that it successfully achieved transmembrane transport. Moreover, C-Tag-mediated membrane transport was verified using micron-scale large unilamellar vesicles (LUVs, approximately 1.5 µm)-based particles. The C-Tagged Fab was able to permeate the liposomal bilayer and it greatly enhanced (a 10.1-fold increase vs. Fab alone) internalization of proteins into the LUV-based particles, indicating that the C-Tag loaded enough proteins into particles for use of high-dose proteins. Accordingly, we established a novel C-Tag-based transport system that has overcome the known technological difficulties of protein transmembrane delivery, and this might be a useful technology for drug development in the future.


Assuntos
Colesterol , Lipossomos , Projetos Piloto , Transporte Biológico , Colesterol/metabolismo
2.
Biosci Trends ; 17(3): 234-238, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37245987

RESUMO

Detecting and appropriately diagnosing a Mycobacterium tuberculosis infection remains technologically difficult because the pathogen commonly hides in macrophages in a dormant state. Described here is novel near-infrared aggregation-induced-emission luminogen (AIEgen) labeling developed by the current authors' laboratory for point-of-care (POC) diagnosis of an M. tuberculosis infection. The selectivity of AIEgen labeling, the labeling of intracellular M. tuberculosis by AIEgen, and the labeling of M. tuberculosis in sputum samples by AIEgen, along with its accuracy, sensitivity, and specificity, were preliminarily evaluated. Results indicated that this near-infrared AIEgen labeling had satisfactory selectivity and it labeled intracellular M. tuberculosis and M. tuberculosis in sputum samples. It had a satisfactory accuracy (95.7%), sensitivity (95.5%), and specificity (100%) for diagnosis of an M. tuberculosis infection in sputum samples. The current results indicated that near-infrared AIEgen labeling might be a promising novel diagnostic tool for POC diagnosis of M. tuberculosis infection, though further rigorous verification of these findings is required.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Sistemas Automatizados de Assistência Junto ao Leito , Tuberculose/diagnóstico por imagem , Escarro/microbiologia , Sensibilidade e Especificidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-36767945

RESUMO

With the continuous development of society, the output of kitchen waste (KW) is fast increasing. De-oiled kitchen water (DKW) and kitchen waste treatment residue (KWTR), two main by-products of the KW treatment industry, are produced accordingly on a large scale. The need to develop an effective technique for the utilization of DKW and KWTR is attracting wide attention. In the present study, black soldier fly larvae (BSFL) were employed as a biological treatment method to treat KWTR with the addition of DKW. The influence of DKW (0-140 mL) on the efficiency of BSFL treatment evaluated by the growth and development of BSFL, the body composition of BSFL, the nutrient content of bioconversion residue (BR), and the bioconversion efficiency of KWTR, was investigated. The results showed that the growth and development of BSFL, the body composition of BSFL, and the conversion rate of KWTR were initially promoted and then inhibited with the addition of DKW. Notably, the amount of DKW added in the T110 group was the most suitable for the growth of BSFL and the accumulation of body composition. Compared with the blank comparison group, the content of crude protein (CP), crude ash (CA), salinity, total phosphorus (TP), and dry matter (DM) of BSFL in the T110 group increased by 3.54%, 6.85%, 0.98%, 0.07% and 2.98%, respectively. However, the addition of DKW could steadily increase the nutrient content of BR, with the highest amount at 140 mL DKW. Following DKW addition, the contents of CP, ether extract (EE), crude fiber (CF), organic matter (OM), total nitrogen (TN), TP, and total potassium (TK) were increased by 4.56%, 3.63%, 10.53%, 5.14%, 0.73%, 0.75%, and 0.52%, respectively, compared with those of the blank comparison group. The study showed that DKW could be used as a nutrient additive in the bioconversion process of KWTR by BSFL, which provided a new method for the resource utilization of DKW.


Assuntos
Dípteros , Animais , Larva , Nutrientes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...