Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; 20(9): e2305798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849041

RESUMO

As the most popular liquid metal (LM), gallium (Ga) and its alloys are emerging as functional materials due to their unique combination of fluidic and metallic properties near room temperature. As an important branch of utilizing LMs, micro- and submicron-particles of Ga-based LM are widely employed in wearable electronics, catalysis, energy, and biomedicine. Meanwhile, the phase transition is crucial not only for the applications based on this reversible transformation process, but also for the solidification temperature at which fluid properties are lost. While Ga has several solid phases and exhibits unusual size-dependent phase behavior. This complex process makes the phase transition and undercooling of Ga uncontrollable, which considerably affects the application performance. In this work, extensive (nano-)calorimetry experiments are performed to investigate the polymorph selection mechanism during liquid Ga crystallization. It is surprisingly found that the crystallization temperature and crystallization pathway to either α -Ga or ß -Ga can be effectively engineered by thermal treatment and droplet size. The polymorph selection process is suggested to be highly relevant to the capability of forming covalent bonds in the equilibrium supercooled liquid. The observation of two different crystallization pathways depending on the annealing temperature may indicate that there exist two different liquid phases in Ga.

2.
Adv Sci (Weinh) ; : e2304525, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037314

RESUMO

Flexible electronic devices extended abilities of humans to perceive their environment conveniently and comfortably. Among them, flexible magnetic field sensors are crucial to detect changes in the external magnetic field. State-of-the-art flexible magnetoelectronics do not exhibit low detection limit and large working range simultaneously, which limits their application potential. Herein, a flexible magnetic field sensor possessing a low detection limit of 22 nT and wide sensing range from 22 nT up to 400 mT is reported. With the detection range of seven orders of magnitude in magnetic field sensor constitutes at least one order of magnitude improvement over current flexible magnetic field sensor technologies. The sensor is designed as a cantilever beam structure accommodating a flexible permanent magnetic composite and an amorphous magnetic wire enabling sensitivity to low magnetic fields. To detect high fields, the anisotropy of the giant magnetoimpedance effect of amorphous magnetic wires to the magnetic field direction is explored. Benefiting from mechanical flexibility of sensor and its broad detection range, its application potential for smart wearables targeting geomagnetic navigation, touchless interactivity, rehabilitation appliances, and safety interfaces providing warnings of exposure to high magnetic fields are explored.

3.
Small ; 19(40): e2303099, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37269214

RESUMO

Copper-based electrocatalysts effectively produce multicarbon (C2+ ) compounds during the electrochemical CO2 reduction (CO2 RR). However, big challenges still remain because of the chemically unstable active sites. Here, cerium is used as a self-sacrificing agent to stabilize the Cu+ of CuS, due to the facile Ce3+ /Ce4+ redox. CeO2 -modified CuS nanoplates achieve high ethanol selectivity, with FE up to 54% and FEC2+ ≈ 75% in a flow cell. Moreover, in situ Raman spectroscopy and in situ Fourier-transform infrared spectroscopy indicate that the stable Cu+ species promote CC coupling step under CO2 RR. Density functional theory calculations further reveal that the stronger * CO adsorption and lower CC coupling energy, which is conducive to the selective generation of ethanol products. This work provides a facile strategy to convert CO2 into ethanol by retaining Cu+ species.

4.
Adv Mater ; 33(42): e2102593, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480381

RESUMO

Structural engineering and compositional controlling are extensively applied in rationally designing and fabricating advanced freestanding electrocatalysts. The key relationship between the spatial distribution of components and enhanced electrocatalysis performance still needs further elaborate elucidation. Here, CeO2 substrate supported CoS1.97 (CeO2 -CoS1.97 ) and CoS1.97 with CeO2 surface decorated (CoS1.97 -CeO2 ) materials are constructed to comprehensively investigate the origin of spatial architectures for the oxygen evolution reaction (OER). CeO2 -CoS1.97 exhibits a low overpotential of 264 mV at 10 mA cm-2 due to the stable heterostructure and faster mass transfer. Meanwhile, CoS1.97 -CeO2 has a smaller Tafel slope of 49 mV dec-1 through enhanced adsorption of OH- , fast electron transfer, and in situ formation of Co(IV)O2 species under the OER condition. Furthermore, operando spectroscopic characterizations combined with theoretical calculations demonstrate that spatial architectures play a distinguished role in modulating the electronic structure and promoting the reconstruction from sulfide to oxyhydroxide toward higher chemical valence. The findings highlight spatial architectures and surface reconstruction in designing advanced electrocatalytic materials.

5.
RSC Adv ; 9(39): 22644-22655, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519459

RESUMO

Strawberry-like Co/C/Fe/C core-shell hierarchical flowers (CSHFs) consisting of separated Fe/C nanoparticles (NPs) anchoring on a Co HF surface were prepared by decomposing Fe(CO)5 in the presence of Co HFs. Changing the decomposition temperature (T d) and Fe(CO)5 volume (δ) could also facilely modulate the phase structure, surface morphology and composition of the products. The low T d and small δ helped form Co/C/Fe/C CSHFs with a strawberry-like plasmon surface. The diameter and interparticle spacing-dependent electromagnetic properties were investigated at 2-18 GHz. The interparticle-spacing-to-diameter ratio determines the plasmon resonance and coupling. The permittivity and permeability enhanced by strong plasmon resonance were exhibited by Co/C/Fe/C CSHFs formed at δ = 3-4 mL with the interparticle-spacing-to-diameter ratio of 1.36-0.76. The collective oscillation of the conduction band electrons and near field on the Co/C and Fe/C surfaces generated a surface plasmon resonance and coupling, which were responsible for significantly enhanced permittivity and permeability with negative values. In view of the synergistic effect of the enhanced permittivity and permeability, dual dielectric relaxations, dual magnetic resonances, high attenuation and good impedance matching, Co/C/Fe/C CSHFs with particle size of 110 ± 20-380 ± 100 nm and interparticle spacing of 150 ± 50 nm were excellent absorbers that feature strong absorption, broad bandwidth and light weight. An optimal reflection loss (R L) of -45.06 was found at 17.92 GHz for an absorber thickness of 1.6 mm, and the frequency range (R L ≤ -20 dB, 99% absorption) was over 2-18 GHz. Our findings demonstrated that optimally designed plasmonic heterostructures must be fabricated to improve microwave absorption performances for future applications.

6.
Chemistry ; 24(54): 14436-14441, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-29968344

RESUMO

Highly toxic heavy metal ions such as mercury ions (Hg2+ ) are a great threat to human life and the environment. Developing new strategies and materials to remove the toxic heavy metal ions has attracted more and more attentions. Herein a facile self-protection synthesis of thiol-based nanoporous adsorbents for efficient mercury removal via a polymerization-cutting strategy is reported. The direct free-radical polymerization of divinyl disulfide derivative and subsequently cutting off the disulfide linkage, without post-synthesis or modification, can give rise to an exceptionally high density of thiol chelating sites. Moreover, the resultant thiol-based nanoporous adsorbents (NAs-SH) exhibit a high saturation uptake capacity (1240 mg g-1 ) and reused ability for mercury removal from water solution. The proposed polymerization-cutting strategy may provide an alternative and cost-effective method for the design and synthesis of various efficient nanoporous adsorbents at large scale in the future.

7.
Org Lett ; 19(21): 5776-5779, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29072468

RESUMO

The synthesis of azide functional microporous organic nanotube networks (N3-MONNs) via a Friedel-Crafts hyper-cross-linking reaction is reported. Subsequently, a general method for obtaining heterogeneous catalysts through a Cu-catalyzed alkyne-azide reaction is presented. The small-molecule catalysts such as 2,2,6,6,-tetramethylpiperidine-1-oyl and 4-(N,N-dimethylamino)pyridine can be anchored into the MONNs. Owing to the hierarchically porous structure and high surface area, these catalysts show high activity in selective oxidation of alcohols and acylation reaction, respectively.

8.
ACS Appl Mater Interfaces ; 9(40): 35209-35217, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28926693

RESUMO

Hollow microporous organic nanospheres (H-MONs) are prepared by using polylactide-b-polystyrene diblock copolymers (PLA-b-PS) as the precursor via a hyper-cross-linking mediated self-assembly strategy, in which the hyper-cross-linking PS block forms the microporous organic shell framework, and the degradable PLA block produces the hollow mesoporous core structure. The formation mechanism, morphology, and porosity parameters of the resulting H-MONs are systematically investigated. Moreover, based on the hyper-cross-linking generated rigid microporous organic frameworks, hollow microporous carbon nanospheres (H-MCNs) can be achieved by further pyrolysis progress. The obtained H-MCNs as electrode materials of a supercapacitor exhibit excellent electrochemical performance with specific capacitances of up to 145 F g-1 at 0.2 A g-1, with almost no capacitance loss even after 5000 cycles at 10 A g-1. More especially, H-MONs can be further act as "nanoreactors" for the synthesis of Fe3O4 nanoparticles within hollow cores to construct magnetic core-shell Fe3O4@H-MONs nanocomposite materials. Our strategy represents a new avenue for the preparation of hollow morphology-controlled microporous organic polymers with various potential applications.

9.
Macromol Rapid Commun ; 37(19): 1566-1572, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27493017

RESUMO

Here, a novel method is demonstrated for the preparation of three-arm branched microporous organic nanotube networks (TAB-MONNs) based on molecular templating of three-arm branched core-shell bottlebrush copolymers and Friedel-Crafts alkylation reaction. The unique three-arm branched bottlebrush copolymers are synthesized by a combination of atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, and ring-opening polymerization techniques. In this approach, the length and diameter of branched tube units can be well-controlled by rational molecular design. Moreover, the as-prepared TAB-MONNs possess a high surface area and exhibit a superior adsorption capacity for Rhodamine 6G (R6G) and p-cresol.


Assuntos
Nanotubos/química , Adsorção , Cinética , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Porosidade , Propriedades de Superfície
10.
Chemistry ; 21(28): 10220-5, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26031407

RESUMO

A novel method for the in situ synthesis of dual-phase thermosensitive ultrasmall gold nanoparticles (USGNPs) with diameters in the range of 1-3 nm was developed by using poly(N-isopropylacrylamide)-block-poly(N-phenylethylenediamine methacrylamide) (PNIPAM-b-PNPEDMA) amphiphilic diblock copolymers as ligands. The PNPEDMA block promotes the in situ reduction of gold precursors to zero-valent gold and subsequently binds to the surface of gold nanoparticles, while PNIPAM acts as a stabilizing and thermosensitive block. The as-synthesized USGNPs stabilized by a thermosensitive PNIPAM layer exhibit a sharp, reversible, clear-opaque transition in aqueous solution between 30 and 38 °C. An unprecedented finding is that these USGNPs also show a reversible soluble-precipitate transition in nonpolar organic solvents such as chloroform at around 0 °C under acidic conditions.

11.
Chem Commun (Camb) ; 50(94): 14778-81, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25317577

RESUMO

We demonstrate a novel method that enables the formation of core-confined bottlebrush copolymers (CCBCs) as catalyst supports. Significantly, owing to the site-isolated effect, these CCBC catalysts with the incompatible acidic para-toluenesulfonic acid (PTSA) and basic 4-(dimethylamino)pyridine (DMAP) groups can conduct a simple two-step sequential reaction in one vessel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...