Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.396
Filtrar
1.
BMC Microbiol ; 24(1): 232, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951807

RESUMO

BACKGROUND: Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS: In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS: This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.


Assuntos
Aves , Dieta , Fungos , Microbioma Gastrointestinal , Estações do Ano , Animais , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Aves/microbiologia , Trato Gastrointestinal/microbiologia , DNA Fúngico/genética , Filogenia
2.
J Hepatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960374

RESUMO

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

3.
Biochem Biophys Res Commun ; 729: 150358, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981401

RESUMO

Pterostilbene (PTE), a naturally occurring phenolic compound primarily found in blueberries, demonstrates neuroprotective properties. However, the role of PTE in Parkinson's disease (PD) remains unclear. This study aimed to investigate the neuroprotective role of PTE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our findings demonstrate that administering PTE effectively reversed the diminished levels of dopamine in the striatum, thereby ameliorating motor impairments in the MPTP model. Moreover, PTE administration mitigated the loss of dopaminergic (DA) neurons and reduced the upregulation of α-synuclein (α-syn) induced by MPTP. Mechanistic analysis revealed that PTE administration inhibited the activation of microglia and astrocytes, as well as pro-inflammatory factors such as TNF-α and IL-1ß in the MPTP model. Additionally, PTE administration decreased MPTP-induced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing total antioxidant capacity (TAOC) and superoxide dismutase (SOD) activity, thereby attenuating oxidative stress. Collectively, these findings demonstrate that PTE exerts neuroprotective effects in the MPTP mouse model of PD by suppressing neuroinflammation and oxidative stress. Thus, PTE holds promise as a therapeutic agent for PD.

4.
Small ; : e2403537, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004860

RESUMO

Rechargeable batteries have transformed human lives and modern industry, ushering in new technological advancements such as mobile consumer electronics and electric vehicles. However, to fulfill escalating demands, it is crucial to address several critical issues including energy density, production cost, cycle life and durability, temperature sensitivity, and safety concerns is imperative. Recent research has shed light on the intricate relationship between these challenges and the chemical processes occurring at the electrode-electrolyte interface. Consequently, a novel approach has emerged, utilizing self-assembled molecular layers (SAMLs) of meticulously designed molecules as nanomaterials for interface engineering. This research provides a comprehensive overview of recent studies underscoring the significant roles played by SAML in rechargeable battery applications. It discusses the mechanisms and advantageous features arising from the incorporation of SAML. Moreover, it delineates the remaining challenges in SAML-based rechargeable battery research and technology, while also outlining future perspectives.

5.
Angew Chem Int Ed Engl ; : e202408728, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007175

RESUMO

Deep eutectic electrolytes (DEEs) have attracted significant interest due to the unique physiochemical properties, yet challenges persist in achieving satisfactory Li anode compatibility through a binary DEE formula. In this study, we introduce a nonflammable binary DEE electrolyte comprising of lithium bis(trifluoro-methane-sulfonyl)imide (LiTFSI) and solid butadiene sulfone (BdS), which demonstrates enhanced Li metal compatibility while exhibiting high Li+ ion migration number (0.52), ionic conductivity (1.48 mS·cm-1), wide electrochemical window (~4.5 V vs. Li/Li+) at room temperature. Experimental and theoretical results indicate that the Li compatibility derives from the formation of a LiF-rich SEI, attributed to the undesirable adsorption and deformation of BdS on Li surface that facilitates the preferential reactions between LiTFSI and Li metal. This stable SEI effectively suppresses dendrites growth and gas evolution reactions, ensuring a long lifespan and high coulombic efficiency in both the Li||Li symmetric cells, Li||LiCoO2 and Li||LiNi0.8Co0.1Mn0.1O2 full cells. Moreover, the BdS eutectic strategy exhibit universal applicability to other metal such as Na and Zn by pairing with the corresponding TFSI-based salts.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39046129

RESUMO

Platinum(II) drugs as a first-line anticancer reagent are limited by side effects and drug resistance. Stimuli-responsive nanosystems hold promise for precise spatiotemporal manipulation of drug delivery, with the aim to promote bioavailability and minimize side effects. Herein, a multitargeting octahedral platinum(IV) prodrug with octadecyl aliphatic chain and histone deacetylase inhibitor (phenylbutyric acid, PHB) at axial positions to improve the therapeutic effect of cisplatin was loaded on the upconversion nanoparticles (UCNPs) through hydrophobic interaction. Followed attachment of DSPE-PEG2000 and arginine-glycine-aspartic (RGD) peptide endowed the nanovehicles with high biocompatibility and tumor specificity. The fabricated nanoparticles (UCNP/Pt(IV)-RGD) can be triggered by upconversion luminescence (UCL) irradiation and glutathione (GSH) reduction to controllably release Pt(II) species and PHB, inducing profound cytotoxicity. Both in vitro and in vivo experiments demonstrated that UCNP/Pt(IV)-RGD exhibited remarkable antitumor efficiency, high tumor-targeting specificity, and real-time UCL imaging capacity, presenting an intelligent platinum(IV) prodrug-loaded nanovehicle for UCL-guided dual-stimuli-responsive combination therapy.

7.
Aesthetic Plast Surg ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046484

RESUMO

OBJECTIVE: The aim of this study was to further guide the diagnosis and treatment programs for clinical facial contouring with injectable fillers by studying the facial contour parameters and proportion preferences consistent with Asian aesthetics. METHODS: A total of 89 subjects (42 males and 47 females aged 20-60 years) who met the inclusion criteria were enrolled in this study. The subjects were grouped by age, sex, and external contour attractiveness score, and the external contour aesthetic parameters and proportions of the subjects in different groups were measured and analysed. RESULTS: The upper facial breadth and lower facial breadth decreased with age, with significant differences between the 50-60-year age group and other age groups (P < 0.01). The nasomental angle showed a decreasing trend with age, with significant differences between the 40-49-year age group and the 20-29-year and 30-39-year age groups (P < 0.05). Males and females were significantly different in calva height, total head height, lower facial height, and calva height to total head height ratio (P < 0.05). With increasing age, the external contour attractiveness scores of males and females both showed decreasing trends, with significant differences between the 50-60-year age group and other age groups (P < 0.05). CONCLUSION: The calva height and the cranioauricular angle have a significant impact on external contour attractiveness. In general, temporal depression, cheek sagging, lateral cheek depression, and an ill-defined mandibular border will occur due to ageing, collagen loss, ligament laxity and sagging, and soft tissue atrophy and sagging, reducing the attractiveness of the external contour. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

8.
Biomol Biomed ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038240

RESUMO

Joint stiffness and fibrosis are common complications that affect mobility and quality of life, necessitating effective therapeutic strategies to alleviate these issues. The study aimed to observe the therapeutic effect of static progressive stretching (SPS) combined with botulinum toxin type A (BTX-A) on knee joint stiffness in rats and its effect on the transforming growth factor beta 1 (TGF-ß1)/small mother against decapentaplegic (Smad) pathway in the development of joint capsule fibrosis. Forty Sprague Dawley rats were randomly divided into the blank control group, model control group, SPS intervention group, BTX-A intervention group, and SPS combined with BTX-A intervention group. Except for the blank control group, the right knee joints of the other rats were surgically fixed with Kirschner wire internal immobilization in full flexion for four weeks to form joint flexion contracture and cause fibrotic stiffness of the joint. The therapeutic effect of each intervention was assessed by the range of motion (ROM) of the knee joint, joint stiffness, the number of total cells, and collagen deposition in the posterior joint capsule, as well as the protein level expressions of  TGF-ß1, Smad2, Smad3, Smad4, p-Smad2/3, collagen I and III, and alpha smooth muscle actin (α-SMA) in the posterior joint capsule in the TGF-ß1/Smad pathway. SPS combined with BTX-A was more effective in relieving joint fibrosis stiffness, improving the histopathological changes in the posterior joint capsule, and suppressing the high expression of target proteins and the overactivated TGF-ß1/Smad pathway. The overactivated TGF-ß1/Smad pathway was involved in the formation of knee joint fibrosis stiffness in rats. SPS combined with BTX-A was effective in relieving joint flexion contracture and fibrosis of the joint capsule. Moreover, the inhibition of the overactivated TGF-ß1/Smad pathway may be the potential molecular mechanism for its therapeutic effect.

9.
Curr Microbiol ; 81(9): 277, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028528

RESUMO

In the context of China's garbage classification policy, on-site aerobic food waste (FW) digestion is crucial for reducing transportation and disposal costs. The efficiency of this process is largely determined by the microbial community structure and its functions. Therefore, this study aimed to analyze the impact of a personalized microbial consortium (MCM) on the efficiency of aerobic FW digestion and to reveal the underlying mechanisms. An MCM, sourced from naturally degrading FW, was selected to enrich degrading bacteria with relatively high hydrolyzing ability. The functionality of the MCM was evaluated by tracing the successions of microbial communities, and comparing the differences in the forms of organic compounds, metabolic functions, and hydrolase activities. X-ray photoelectron spectroscopy demonstrated that the MCM metabolized faster, and produced more acidic metabolites. Metagenomic analysis indicated that FW inoculated with the personalized MCM increased abundance of Bacillaceae producing hydrolysis enzymes and promoted glycolysis metabolic pathways, enhancing energy generation for metabolism, compared to the commercial effective bacterial agent. This paper provides both theoretical and practical evidence for the improvement of biochemical processor of FW with the personalized MCM, which has promising application prospects and economic value.


Assuntos
Bactérias , Aerobiose , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Consórcios Microbianos , Resíduos de Alimentos , China , Eliminação de Resíduos/métodos , Hidrólise , Metagenômica , Perda e Desperdício de Alimentos
10.
ACS Appl Mater Interfaces ; 16(27): 35323-35332, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946487

RESUMO

The micro- and nanostructures of III-nitride semiconductors captivate strong interest owing to their distinctive properties and myriad potential applications. Nevertheless, challenges endure in managing the damage inflicted on crystals through top-down processes or achieving extensive control over the large-area growth of these microstructures via bottom-up methods, thereby impacting their optical and electronic properties. Here, we present novel epitaxially grown 3D GaN truncated pyramid arrays (TPAs) on patterned Si substrates, devoid of any catalyst. These GaN TPAs feature highly ordered, large-scale structures, attributed to the utilization of 3D Si substrates and thin AlN interlayers to alleviate epitaxial strains and limit dislocation formation. Comprehensive characterization via scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and cathodoluminescence attests to the superior structural and optical attributes of these crystals. Furthermore, photoluminescence and ultraviolet (UV)-visible diffuse reflectance spectroscopy reveal sharp band-edge emission and significant light trapping in the UV bands. Employing these GaN TPAs, we constructed metal-semiconductor-metal visible-blind UV photodetectors (PDs) incorporating Ti3C2 MXene as Schottky electrodes. These PDs display exceptional responsivity, achieving 5.32 × 103 mA/W at 255 nm and an ultrahigh UV/visible rejection ratio (R255nm/R450nm) approaching 106, which are 1-2 orders of magnitude higher than most recently reported works. This exploration showcases novel GaN-based microstructures characterized by uniformity, ordered geometry, and exemplary crystalline integrity, paving the way for developing optoelectronic applications.

11.
Light Sci Appl ; 13(1): 166, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009583

RESUMO

3-dB couplers, which are commonly used in photonic integrated circuits for on-chip information processing, precision measurement, and quantum computing, face challenges in achieving robust performance due to their limited 3-dB bandwidths and sensitivity to fabrication errors. To address this, we introduce topological physics to nanophotonics, developing a framework for topological 3-dB couplers. These couplers exhibit broad working wavelength range and robustness against fabrication dimensional errors. By leveraging valley-Hall topology and mirror symmetry, the photonic-crystal-slab couplers achieve ideal 3-dB splitting characterized by a wavelength-insensitive scattering matrix. Tolerance analysis confirms the superiority on broad bandwidth of 48 nm and robust splitting against dimensional errors of 20 nm. We further propose a topological interferometer for on-chip distance measurement, which also exhibits robustness against dimensional errors. This extension of topological principles to the fields of interferometers, may open up new possibilities for constructing robust wavelength division multiplexing, temperature-drift-insensitive sensing, and optical coherence tomography applications.

12.
Immunol Lett ; 269: 106890, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959983

RESUMO

BACKGROUND: Autoimmune thyroiditis (AITD) is an organ-specific autoimmune disease. Substantial evidence suggests that Vitamin D (VitD) deficiency is closely associated with an increased risk of AITD. However, the effects of VitD3 on immune cells, especially Th17/Treg cell subsets, and the underlying molecular mechanism in AITD have not yet been investigated. METHODS: An experimental autoimmune thyroiditis (EAT) mouse model was established with a high-iodine diet. After 8 weeks, thyroid injury was assessed using hematoxylin and eosin (H&E) staining. ELISA was employed to measure serum levels of thyroxine (T3 and T4), thyroid autoimmune antibodies (Tg-Ab and TPO-Ab), and inflammatory cytokines. Flow cytometry and multiplex fluorescence immunohistochemical (mIHC) assays were used to analyze Th17/Treg cell subsets. The CCK-8 and flow cytometry assays were used to determine cell viability and apoptosis. RESULTS: Administration of VitD3 reduced thyroid follicle destruction, decreased lymphocyte infiltration, and lowered T3, T4, Tg-Ab, and TPO-Ab serum levels in EAT mice. VitD3 treatment also reduced the frequency of Th17 cells while promoting the Treg cell subset both in the thyroid tissue and in the splenocytes cultured in vitro. Furthermore, VitD3 administration suppressed the production of inflammatory cytokines in EAT mice. VitD3 was also found to regulate Treg cells' differentiation, viability, and apoptosis. Mechanistically, we discovered that VitD3 treatment upregulated YAP expression and activated the JAK/STAT pathway. Rescue assays confirmed that depletion of YAP counteracted the effects of VitD3 on Treg cell differentiation and function. CONCLUSION: Vitamin D3 attenuates AITD by modulating Th17/Treg cell balance via regulating the YAP/JAK1/STAT1 axis.

13.
Patterns (N Y) ; 5(6): 100970, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-39005489

RESUMO

Atrial fibrillation (AF), the most prevalent cardiac rhythm disorder, significantly increases hospitalization and health risks. Reverting from AF to sinus rhythm (SR) often requires intensive interventions. This study presents a deep-learning model capable of predicting the transition from SR to AF on average 30.8 min before the onset appears, with an accuracy of 83% and an F1 score of 85% on the test data. This performance was obtained from R-to-R interval signals, which can be accessible from wearable technology. Our model, entitled Warning of Atrial Fibrillation (WARN), consists of a deep convolutional neural network trained and validated on 24-h Holter electrocardiogram data from 280 patients, with 70 additional patients used for testing and further evaluation on 33 patients from two external centers. The low computational cost of WARN makes it ideal for integration into wearable technology, allowing for continuous heart monitoring and early AF detection, which can potentially reduce emergency interventions and improve patient outcomes.

14.
J Chem Theory Comput ; 20(14): 6049-6061, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38995176

RESUMO

The Hohenberg-Kohn theorem of density functional theory (DFT) stipulates that energy is a universal functional of electron density in the ground state, so energy can be thought of having encoded essential information for the density. Based on this, we recently proposed to quantify energetic information within the framework of information-theoretic approach (ITA) of DFT (J. Chem. Phys. 2022, 157, 101103). In this study, we systematically apply energetic information to a variety of chemical phenomena to validate the use of energetic information as quantitative measures of physicochemical properties. To that end, we employed six ITA quantities such as Shannon entropy and Fisher information for five energetic densities, yielding twenty-six viable energetic information quantities. Then, they are applied to correlate with physicochemical properties of molecular systems, including chemical bonding, conformational stability, intermolecular interactions, acidity, aromaticity, cooperativity, electrophilicity, nucleophilicity, and reactivity. Our results show that different quantities of energetic information often behave differently for different properties but a few of them, such as Shannon entropy of the total kinetic energy density and information gain of the Pauli energy density, stand out and strongly correlate with several properties across different categories of molecular systems. These results suggest that they can be employed as quantitative measures of physicochemical properties. This work not only enriches the body of our knowledge about the relationship between energy and information, but also provides scores of newly introduced explicit density functionals to quantify physicochemical properties, which can serve as robust features for building machine learning models in future studies.

15.
J Adv Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029900

RESUMO

INTRODUCTION: The intestine, frequently subjected to pelvic or abdominal radiotherapy, is particularly vulnerable to delayed effects of acute radiation exposure (DEARE) owing to its high radiation sensitivity. Radiation-induced intestinal senescence, a result of DEARE, profoundly affects the well-being and quality of life of radiotherapy patients. However, targeted pharmaceutical interventions for radiation-induced senescence are currently scarce. Our findings showcase that nicotinamide riboside(NR) effectively alleviates radiation-induced intestinal senescence, offering crucial implications for utilizing NR as a pharmacological agent to combat intestinal DEARE. OBJECTIVES: The aim of this study was to investigate the ability of NR to reduce radiation induced intestinal senescence and explore its related mechanisms. METHODS: Male C57BL/6J mice were randomly divided into CON, IR, and IR + NR groups. The mice in the IR and IR + NR groups were subjected to a 6.0 Gy γ-ray total body exposure. After 8 weeks, the mice in the IR + NR group received NR via gavage at a dose of 400 mg/kg/d for 21 days. Then the mice were used for sample collection. RESULTS: Our results demonstrate that NR can significantly mitigate radiation-induced intestinal senescence. Furthermore, our findings indicate that NR can mitigate oxidative damage, restore the normal function of intestinal stem cells, regulate the disruption of the intestinal symbiotic ecosystem and address metabolic abnormalities. In addition, the underlying mechanisms involve the activation of SIRT6, SIRT7 and the inhibition of the mTORC1 pathway by NR. CONCLUSION: In conclusion, our results reveal the substantial inhibitory effects of NR on radiation-induced intestinal senescence. These findings offer valuable insights into the potential therapeutic use of NR as a pharmacological agent for alleviating intestinal DEARE.

16.
Chem Commun (Camb) ; 60(58): 7447-7450, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946686

RESUMO

I+ hydrolysis, sluggish iodine redox kinetics and the instability of Zn anodes are the primary challenges for aqueous four-electron zinc-iodine batteries (4eZIBs). Herein, the OTf- anion chemistry in aqueous electrolyte is essential for developing advanced 4eZIBs. It is elucidated that OTf- anions establish weak hydrogen bonds (H bonds) with water to stabilize I+ species while optimizing a water-lean Zn2+ coordination structure to mitigate Zn dendrites and corrosion. Moreover, the interaction of the OTf- anions with the iodine species results in an increased equilibrium average intermolecular bond length of the iodine species, facilitating the 4e redox kinetics of iodine with improved reversibility.

17.
Lupus Sci Med ; 11(2)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991834

RESUMO

INTRODUCTION: The efficacy of belimumab in SLE has been demonstrated in randomised clinical trials, and its real-world effectiveness has been shown in studies in several countries. While belimumab was approved for treating SLE in China in 2019, data on its benefit in clinical practice are limited. This study will evaluate belimumab's effectiveness in China, using practical clinical measures, such as Lupus Low Disease Activity State (LLDAS), to add to the body of real-world evidence. METHODS AND ANALYSIS: The Real-world Effectiveness of beLImumAB in patients with systemic Lupus Erythematosus in China (RELIABLE) is an ambidirectional, observational descriptive cohort study across approximately 15 centres in China. Adults with SLE newly initiating belimumab with ≥1 measure of all five LLDAS components (SLE Disease Activity Index-2000; no new lupus disease activity; Physician Global Assessment; prednisolone-equivalent dose; immunosuppressants/biologics use) in the 3 months preceding belimumab initiation (index date) will be eligible and retrospectively and/or prospectively enrolled, depending on data availability. The retrospective follow-up will be ≤6 months, and retrospective and prospective patients will have a maximum 24-month follow-up. The primary objectives will be to describe the proportion of patients achieving LLDAS at 12 and 24 months post-index. The key secondary objective will be to describe the proportion of patients achieving LLDAS and each component at 3, 6, 9 and 18 months post-index. All data will be analysed descriptively; a statistical estimand will be applied to account for intercurrent events expected in a real-world setting. ETHICS AND DISSEMINATION: This study will comply with all applicable laws regarding patient privacy; institutional review board approval will be obtained before the study commencement. CONCLUSIONS: This study will evaluate belimumab's effectiveness in patients with SLE initiating belimumab in clinical practice in China. Using LLDAS will provide clinicians with valuable insights into the impact of belimumab on the treat-to-target strategy with a relevant measure that can be repeated across the clinical practice.


Assuntos
Anticorpos Monoclonais Humanizados , Imunossupressores , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , China , Imunossupressores/uso terapêutico , Resultado do Tratamento , Estudos Retrospectivos , Estudos Observacionais como Assunto , Índice de Gravidade de Doença , Estudos Prospectivos , Adulto , Feminino , Estudos de Coortes
18.
J Adolesc ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946211

RESUMO

OBJECTIVE: Overweight and obesity among adolescents are grave public health issues around the world. Although the conditions that contribute to obesity have been extensively researched, little is known about how multiple conditions interact to cause overweight and obesity. The current study intends to investigate the histomorphic configuration pathways of several conditions of adolescent overweight and obesity by gender. METHOD: The data came from a social survey conducted in June 2021 in Changchun, Jilin Province, China. The sample collected was 14-year-old adolescents, including 167 boys and 137 girls. The school physicians examined the participants' weight and height, and questionnaires were used to collect risk indicators from adolescents, such as sleep duration, electronic screens times, consumption of sugary drinks and fried foods, and physical activity. Simultaneously, a Fuzzy Qualitative Comparative Analysis will be performed to investigate the combinations of diverse conditions. RESULT: We found that there is no determining necessary condition that, once present, directly determines that an individual is in a state of overweight and obesity. Simultaneously, this study revealed nine alternative configurational paths of overweight and obesity in teenagers of different genders, with a concordance of 0.805 for six male groupings and 0.916 for three female groupings. The outcomes of overweight obesity in adolescents under different genders are similar but not identical. CONCLUSION: This study examined the interactions of a number of conditions from the individual, behavioral, learning and living environment that led to the same overweight obese outcome among adolescents of different genders. Our research will be useful to policymakers in that interventions should take into account the combined effects of a number of different aspects rather than focusing on a single factor that causes overweight and obesity.

19.
Sci Rep ; 14(1): 13891, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880799

RESUMO

Traditional DID models overlook variations in policy intensity, causing estimation deviations from the actual situation and a limited understanding of the influence mechanism. In response, the Intensity Modified SDID Model is built to examine the influence mechanism of ETS's carbon reductions. Moreover, through model extensions, the study explores the spatiotemporal characteristics and heterogeneities of ETS's effects. Results show that: (1) "Dual-circulation" influence mechanism is confirmed, where ETS directly contributes to carbon reductions (2.70% to 10.0% impact) through external pathways, and internal pathways continuously strengthen reduction effects, comprehensive mechanisms are thereby formed and enhanced based on interaction among internal and external pathways. (2) Reasonable ETS levels are estimated and proposed to achieve "Dual Carbon Target", constraining nationwide carbon quotas by 20 billion tons/year, increasing carbon trading volumes by 80 thousand tons/year, and elevating the carbon trading prices by 100 RMB (14 USD) per ton. (3) ETS's carbon reduction effects are identified with temporal and spatial characteristics, temporally, effects peak in the 4th period (Event+4) but diminish in the 5th period (Event+5), spatially, effects peak in areas distancing around 1000 km but disappear beyond 1500 km. (4) ETS also has synergistic effects with atmospheric pollution reduction, including industrial emissions of sulfur dioxide and smoke (dust), but are insignificant to industrial emissions of wastewater and solid waste.

20.
Biol Direct ; 19(1): 46, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880876

RESUMO

BACKGROUND: There is growing evidence indicating that deubiquitinating enzymes may contribute to tumor progression and can serve as promising therapeutic targets. METHODS: The overexpression of deubiquitinase OTUD6B in lung adenocarcinoma (LUAD) and its adjacent tissues was analyzed by immunohistochemistry and TCGA/GO database. Survival analysis further supported OTUD6B as a potential target for LUAD treatment. We assessed the effect of OTUD6B on LUAD cell growth using cell viability assays and conducted TUNEL staining, migration, and invasion experiments to investigate the impact of OTUD6B on the apoptosis and metastasis of LUAD cells. Additionally, we established a transplanted tumor model in nude mice to validate our findings in vivo. Finally, using IP mass spectrometry and co-IP experiments, we screened and confirmed the influence of RIPK1 as a substrate of OTUD6B in LUAD. RESULTS: OTUD6B is highly overexpressed in human LUAD and predicts poor prognosis in LUAD patients. OTUD6B knockdown inhibited the proliferation of LUAD cells and enhanced apoptosis and inhibited metastasis in LUAD cells suppressed. A549 xenografts revealed that OTUD6B deletion can slow down tumour growth. Additionally, OTUD6B can bind to RIPK1, reduce its ubiquitination level and increase its protein stability. CONCLUSIONS: Our results suggest that OTUD6B is a promising clinical target for LUAD treatment and that targeting OTUD6B may constitute an effective anti-LUAD strategy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos Nus , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Progressão da Doença , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Células A549 , Ubiquitinação , Estabilidade Proteica , Endopeptidases/metabolismo , Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...