Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Clin Microbiol Rev ; 35(4): e0002721, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314911

RESUMO

This review serves as an update to the previous Nocardia review by Brown-Elliott et al. published in 2006 (B. A. Brown-Elliott, J. M. Brown, P. S. Conville, and R. J. Wallace. Jr., Clin Microbiol Rev 19:259-282, 2006, https://doi.org/10.1128/CMR.19.2.259-282.2006). Included is a discussion on the taxonomic expansion of the genus, current identification methods, and the impact of new technology (including matrix-assisted laser desorption ionization-time of flight [MALDI-TOF] and whole genome sequencing) on diagnosis and treatment. Clinical manifestations, the epidemiology, and geographic distribution are briefly discussed. An additional section on actinomycotic mycetoma is added to address this often-neglected disease.


Assuntos
Nocardia , Nocardia/genética , Técnicas de Tipagem Bacteriana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591383

RESUMO

Many studies have examined the role that conjugation plays in disseminating antibiotic resistance genes in bacteria. However, relatively little research has quantitively examined and modeled the dynamics of conjugation under growing and nongrowing conditions beyond a couple of hours. We therefore examined growing and nongrowing cultures of Escherichia coli over a 24-h period to understand the dynamics of bacterial conjugation in the presence and absence of antibiotics with pUUH239.2, an IncFII plasmid containing multiantibiotic- and metal-resistant genes. Our data indicate that conjugation occurs after E. coli cells divide and before they have transitioned to a nongrowing phase. The result is that there is only a small window of opportunity for E. coli to conjugate with pUUH239.2 under both growing and nongrowing conditions. Only a very small percentage of the donor cells likely are capable of even undergoing conjugation, and not all transconjugants can become donor cells due to molecular regulatory controls and not being in the correct growth phase. Once a growing culture enters stationary phase, the number of capable donor cells decreases rapidly and conjugation slows to produce a plateau. Published models did not provide accurate descriptions of conjugation under nongrowing conditions. We present here a modified modeling approach that accurately describes observed conjugation behavior under growing and nongrowing conditions.IMPORTANCE There has been growing interest in horizontal gene transfer of antibiotic resistance plasmids as the antibiotic resistance crisis has worsened over the years. Most studies examining conjugation of bacterial plasmids focus on growing cultures of bacteria for short periods, but in the environment, most bacteria grow episodically and at much lower rates than in the laboratory. We examined conjugation of an IncFII antibiotic resistance plasmid in E. coli under growing and nongrowing conditions to understand the dynamics of conjugation under which the plasmid is transferred. We found that conjugation occurs in a narrow time frame when E. coli is transitioning from a growing to nongrowing phase and that the conjugation plateau develops because of a lack of capable donor cells in growing cultures. From an environmental aspect, our results suggest that episodic growth in nutrient-depleted environments could result in more conjugation than sustained growth in a nutrient rich environment.


Assuntos
Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Escherichia coli K12/genética , Plasmídeos/fisiologia , Antibacterianos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Plasmídeos/genética
3.
Front Microbiol ; 9: 2122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254617

RESUMO

Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased scrutiny from the scientific community in recent years owing to the public health threat associated with antibiotic resistant bacteria. Most studies have examined HGT in growing cultures. We examined conjugation in growing and non-growing cultures of E. coli using a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical parameters that favor horizontal gene transfer. The conjugation frequency in growing and non-growing cultures was generally greater under shaken than non-shaken conditions, presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1 mM NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini broth, whereas those in 1 mM or 90.1 mM NaCl were much lower. This salinity effect on conjugation was attributed to differences in cell-cell interactions and conformational changes in cell surface macromolecules. In the presence of antibiotics, the conjugation frequencies of growing cultures did not increase, but in non-growing cultures of 9.1 mM NaCl supplemented with Cefotaxime the conjugation frequency was as much as nine times greater than that of growing cultures. The mechanism responsible for the increased conjugation in non-growing bacteria was attributed to the likely lack of penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests that more attention may be owed to HGT in non-growing bacteria as most bacteria in the environment are likely not growing and the proposed mechanism for increased conjugation may not be unique to the bacteria/plasmid system we studied.

4.
Water Res ; 90: 185-202, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26734779

RESUMO

Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport.


Assuntos
Bactérias Aeróbias/citologia , Cryptosporidium/citologia , Água Potável/parasitologia , Oocistos , Esporos Bacterianos/citologia , Bactérias Aeróbias/fisiologia , Cryptosporidium/fisiologia , Esporos Bacterianos/fisiologia , Purificação da Água
5.
Environ Sci Technol ; 50(3): 1295-303, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26720840

RESUMO

The U.S. Environmental Protection Agency has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a range of physicochemical conditions, and compared with reported information for C. parvum oocysts. Interaction energy calculations predicted a much larger energy barrier and a shallower secondary minimum for spores than oocysts when the solution ionic strength (IS) equaled 0.1, 1, and 10 mM, and no energy barrier when the IS = 100 mM. Spores and oocysts exhibited similar trends of increasing retention with IS and decreasing Darcy water velocity (qw), and the predicted setback distance to achieve a six log removal was always larger for spores than oocysts. However, low levels of observed spore and oocyst release significantly influenced the predicted setback distance, especially when the fraction of reversibly retained microbes (Frev) was high. An estimate for Frev was obtained from large release pulses of spore and oocyst when the IS was reduced to deionized water. The value of Frev always increased with qw, whereas an opposition trend for Frev with IS was observed for spores (decreasing) and oocysts (increasing).


Assuntos
Bacillus subtilis/química , Cryptosporidium parvum/química , Oocistos/química , Esporos Bacterianos/química , Microbiologia da Água , Cryptosporidium , Concentração Osmolar , Propriedades de Superfície , Água/análise
6.
Front Microbiol ; 5: 473, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250021

RESUMO

Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change.

7.
Appl Environ Microbiol ; 79(4): 1171-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220955

RESUMO

The diversity and phylogenetic significance of bacterial genes in the environment has been well studied, but comparatively little attention has been devoted to understanding the functional significance of different variations of the same metabolic gene that occur in the same environment. We analyzed the geographic distribution of 16S rRNA pyrosequences and soxB genes along a geochemical gradient in a terrestrial sulfidic spring to identify how different taxonomic variations of the soxB gene were naturally distributed within the spring outflow channel and to identify possible evidence for altered SoxB enzyme function in nature. Distinct compositional differences between bacteria that utilize their SoxB enzyme in the Paracoccus sulfide oxidation pathway (e.g., Bradyrhizobium, Paracoccus, and Rhodovulum) and bacteria that utilize their SoxB enzyme in the branched pathway (e.g., Chlorobium, Thiothrix, Thiobacillus, Halothiobacillus, and Thiomonas) were identified. Different variations of the soxB genes were present at different locations within the spring outflow channel in a manner that significantly corresponded to geochemical conditions. The distribution of the different soxB gene sequence variations suggests that the enzymes encoded by these genes are functionally different and could be optimized to specific geochemical conditions that define niche space for bacteria capable of oxidizing reduced sulfur compounds.


Assuntos
Biota , Fontes Termais/microbiologia , Redes e Vias Metabólicas/genética , Enxofre/metabolismo , Água/química , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Metagenoma , Dados de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...