Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Osteopath Assoc ; 120(4): 273-282, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227152

RESUMO

CONTEXT: Various forms of simulation-based training, including training models, increase training opportunities and help assess performance of a task. However, commercial training models for lumbar puncture and epidural procedures are costly. OBJECTIVE: To assess medical students' and residents' perception of 3-dimensional (3D)-printed lumbar, cervical, and pelvic models for mastering joint injection techniques and to determine the utility of ultrasonography-guided needle procedure training. METHODS: Osteopathic medical students and residents used in-house 3D-printed gel joint models during an injection ultrasonography laboratory for mastering lumbar epidural, caudal epidural, sacroiliac, and facet joint injection techniques. After the laboratory, they answered a 17-item survey about their perception of the importance of the models in medical education and future practice. The survey also evaluated comfort levels with performing joint injections after using the models, overall satisfaction with the models, and likelihood of using models in the future. RESULTS: Thirty-six medical students and residents participated. Both students and residents agreed that 3D-printed models were easy to use, aided understanding of corresponding procedures, and increased comfort with performing joint injections (all P<.001). Most participants (35 [97.2%]) believed that the models were reasonable alternatives to commercial models. Over half felt capable of successfully performing cervical or pelvic (22 [61.1%]) and lumbar epidural (23 [63.9%]) injections. The majority of participants (34 [94.4%]) would like to use the models in the future for personal training purposes. Overall, 100% believed that the 3D-printed models were a useful tool for injection training. CONCLUSIONS: Results suggest that 3D-printed models provided realistic training experience for injection procedures and seemed to allow participants to quickly master new injection techniques. These models offer a visual representation of human anatomy and could be a cost-saving alternative to commercial trainers.


Assuntos
Treinamento por Simulação , Estudantes de Medicina , Humanos , Dor , Impressão Tridimensional , Ultrassonografia
2.
J Am Chem Soc ; 137(12): 4198-206, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25747268

RESUMO

Distinguishing between the two enantiomers of a molecule is a challenging task due to their nearly identical physical properties. Time-consuming chromatography methods are typically required for this task, which greatly limits the throughput of analysis. Here we describe a fluorescence-based method for the rapid and high-throughput analysis of both small-molecule enantiopurity and concentration. Our approach relies on selective molecular recognition of one enantiomer of the target molecule using a DNA aptamer, and the ability of aptamer-based biosensors to transduce the presence of a target molecule into a dose-dependent fluorescence signal. The key novel aspect of our approach is the implementation of enantiomeric DNA biosensors, which are synthesized from D- and L-DNA, but labeled with orthogonal fluorophores. According to the principle of reciprocal chiral substrate specificity, these biosensors will bind to opposite enantiomers of the target with equal affinity and selectivity, enabling simultaneous quantification of both enantiomers of the target. Using the previously reported DNA biosensor for L-tyrosinamide (L-Tym), we demonstrate the ability to rapidly and accurately measure both enantiopurity and concentration for mixtures of L- and D-Tym. We also apply our enantiomeric biosensors to the optimization of reaction conditions for the synthesis of D-Tym and provide mathematical modeling to suggest that DNA biosensors having only modest binding selectivity can also be used for fluorescence-based enantiopurity measurement. This research provides a generalizable method for high-throughput analysis of reaction mixtures, which is anticipated to significantly accelerate reaction optimization for the synthesis of high-value chiral small molecules.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Tirosina/análogos & derivados , Sequência de Bases , Técnicas Biossensoriais/métodos , DNA/química , Ensaios de Triagem em Larga Escala/métodos , Conformação de Ácido Nucleico , Estereoisomerismo , Tirosina/análise , Tirosina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...