Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3136, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672288

RESUMO

Boron nitride nanotubes (BNNTs) have attracted attention for their predicted extraordinary properties; yet, challenges in synthesis and processing have stifled progress on macroscopic materials. Recent advances have led to the production of highly pure BNNTs. Here we report that neat BNNTs dissolve in chlorosulfonic acid (CSA) and form birefringent liquid crystal domains at concentrations above 170 ppmw. These tactoidal domains merge into millimeter-sized regions upon light sonication in capillaries. Cryogenic electron microscopy directly shows nematic alignment of BNNTs in solution. BNNT liquid crystals can be processed into aligned films and extruded into neat BNNT fibers. This study of nematic liquid crystals of BNNTs demonstrates their ability to form macroscopic materials to be used in high-performance applications.

2.
Sci Adv ; 8(17): eabm3285, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476431

RESUMO

Chlorosulfonic acid and oleum are ideal solvents for enabling the transformation of disordered carbon nanotubes (CNTs) into precise and highly functional morphologies. Currently, processing these solvents using extrusion techniques presents complications due to chemical compatibility, which constrain equipment and substrate material options. Here, we present a novel acid solvent system based on methanesulfonic or p-toluenesulfonic acids with low corrosivity, which form true solutions of CNTs at concentrations as high as 10 g/liter (≈0.7 volume %). The versatility of this solvent system is demonstrated by drop-in application to conventional manufacturing processes such as slot die coating, solution spinning continuous fibers, and 3D printing aerogels. Through continuous slot coating, we achieve state-of-the-art optoelectronic performance (83.6 %T and 14 ohm/sq) at industrially relevant production speeds. This work establishes practical and efficient means for scalable processing of CNT into advanced materials with properties suitable for a wide range of applications.

3.
Adv Mater ; 31(33): e1901641, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222860

RESUMO

Single-walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post-synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution-phase "self-sorting". It is shown that thin-film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2 V-1 s-1 , which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2 V-1 s-1 ), amorphous silicon (≈1 cm2 V-1 s-1 ), and nanocrystalline silicon (≈50 cm2 V-1 s-1 ). Mechanistic studies suggest that this self-sorting is driven by the length-dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long-sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.

4.
Nano Lett ; 19(6): 3519-3526, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31084030

RESUMO

A monofilament fiber spun from individual carbon nanotubes is an arbitrarily long ensemble of weakly interacting, aligned, discrete nanoparticles. Despite the structural resemblance of carbon nanotube monofilament fibers to crystalline polymeric fibers, very little is known about their dynamic collective mechanics, which arise from van der Waals interactions among the individual carbon nanotubes. Using ultrafast stroboscopic microscopy, we study the collective dynamics of carbon nanotube fibers and compare them directly with nylon, Kevlar, and aluminum monofilament fibers under the same supersonic impact conditions. The in situ dynamics and kinetic parameters of the fibers show that the kinetic energy absorption characteristics of the carbon nanotube fibers surpass all other fibers. This study provides insight into the strain-rate-dependent strengthening mechanics of an ensemble of nanomaterials for the development of high-performance fibers used in body armor and other protective nanomaterials possessing exceptional stability in various harsh environments.

5.
Nano Lett ; 19(1): 158-164, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30484322

RESUMO

Ultrashort bunches of electrons, emitted from solid surfaces through excitation by ultrashort laser pulses, are an essential ingredient in advanced X-ray sources, and ultrafast electron diffraction and spectroscopy. Multiphoton photoemission using a noble metal as the photocathode material is typically used but more brightness is desired. Artificially structured metal photocathodes have been shown to enhance optical absorption via surface plasmon resonance but such an approach severely reduces the damage threshold in addition to requiring state-of-the-art facilities for photocathode fabrication. Here, we report ultrafast photoelectron emission from sidewalls of aligned single-wall carbon nanotubes. We utilized strong exciton resonances inherent in this prototypical one-dimensional material, and its excellent thermal conductivity and mechanical rigidity leading to a high damage threshold. We obtained unambiguous evidence for resonance-enhanced multiphoton photoemission processes with definite power-law behaviors. In addition, we observed strong polarization dependence and ultrashort photoelectron response time, both of which can be quantitatively explained by our model. These results firmly establish aligned single-wall carbon nanotube films as novel and promising ultrafast photocathode material.

6.
Nanoscale ; 10(31): 14938-14946, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30046774

RESUMO

The electrical behaviors under mechanical deformation of an aligned single-walled carbon nanotube (SWCNT) film nanocomposite have been systematically investigated in this work. Electrical signals along the CNT axis (‖) and perpendicular to the CNT axis (⊥) follow a specific pattern, which enables the mechanical motion to be determined by vector analysis of such signals. The unique electrical behaviors of the sandwiched nanocomposites originate from the anisotropic characteristics of the CNT films. By combining in situ mechanical investigation with a coarse-grained molecular dynamics simulation, the shearing effect between SWCNTs is found to play a key role in stress-transfer along the ‖ direction, resulting in arc-shape cracks, while the peeling effect is dominant along the ⊥ direction, leading to unifom SWCNT bar bridging at cracks. The fabricated CNT based sandwiched nanocomposite is believed to have great potential in building flexible all-direction sensors.

7.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29322634

RESUMO

At the microscopic scale, carbon nanotubes (CNTs) combine impressive tensile strength and electrical conductivity; however, their macroscopic counterparts have not met expectations. The reasons are variously attributed to inherent CNT sample properties (diameter and helicity polydispersity, high defect density, insufficient length) and manufacturing shortcomings (inadequate ordering and packing), which can lead to poor transmission of stress and current. To efficiently investigate the disparity between microscopic and macroscopic properties, a new method is introduced for processing microgram quantities of CNTs into highly oriented and well-packed fibers. CNTs are dissolved into chlorosulfonic acid and processed into aligned films; each film can be peeled and twisted into multiple discrete fibers. Fibers fabricated by this method and solution-spinning are directly compared to determine the impact of alignment, twist, packing density, and length. Surprisingly, these discrete fibers can be twice as strong as their solution-spun counterparts despite a lower degree of alignment. Strength appears to be more sensitive to internal twist and packing density, while fiber conductivity is essentially equivalent among the two sets of samples. Importantly, this rapid fiber manufacturing method uses three orders of magnitude less material than solution spinning, expanding the experimental parameter space and enabling the exploration of unique CNT sources.

8.
ACS Appl Mater Interfaces ; 9(42): 37112-37119, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28959881

RESUMO

In this study, we apply a simple but effective oxidative purification method to purify carbon nanotube (CNT) fibers synthesized via a floating catalyst technique. After the purification treatment, the resulting CNT fibers exhibited significant improvements in mechanical and electrical properties with an increase in strength, Young's modulus, and electrical conductivity by approximately 81, 230, and 100%, respectively. With the successful dissolution of the CNT fibers in superacid, an extensional viscosity method could be applied to measure the aspect ratio of the CNTs constituting the fibers, whereas high-purity CNT thin films could be produced with a low resistance of 720 Ω/sq at a transmittance of 85%. This work suggests that the oxidative purification approach and dissolution process are promising methods to improve the purity and performance of CNT macroscopic structures.

9.
ACS Appl Mater Interfaces ; 9(41): 36189-36198, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28937741

RESUMO

We study how intrinsic parameters of carbon nanotube (CNT) samples affect the properties of macroscopic CNT fibers with optimized structure. We measure CNT diameter, number of walls, aspect ratio, graphitic character, and purity (residual catalyst and non-CNT carbon) in samples from 19 suppliers; we process the highest quality CNT samples into aligned, densely packed fibers, by using an established wet-spinning solution process. We find that fiber properties are mainly controlled by CNT aspect ratio and that sample purity is important for effective spinning. Properties appear largely unaffected by CNT diameter, number of walls, and graphitic character (determined by Raman G/D ratio) as long as the fibers comprise thin few-walled CNTs with high G/D ratio (above ∼20). We show that both strength and conductivity can be improved simultaneously by assembling high aspect ratio CNTs, producing continuous CNT fibers with an average tensile strength of 2.4 GPa and a room temperature electrical conductivity of 8.5 MS/m, ∼2 times higher than the highest reported literature value (∼15% of copper's value), obtained without postspinning doping. This understanding of the relationship of intrinsic CNT parameters to macroscopic fiber properties is key to guiding CNT synthesis and continued improvement of fiber properties, paving the way for CNT fiber introduction in large-scale aerospace, consumer electronics, and textile applications.

10.
Nanoscale ; 8(47): 19668-19676, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27858049

RESUMO

Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 108 A m-2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.

11.
Nanoscale ; 8(15): 7969-77, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27009759

RESUMO

Single-wall carbon nanotube (SWCNT) films are ideal components for thin, flexible, and durable electronic devices. Here, we use a variety of processing approaches to fabricate SWCNT-silicon heterojunctions from both unsorted and chirality-enriched SWCNTs. Through measured structure/processing/property relationships, we quantify the influence of SWCNT purity, alignment and residual doping on device performance and diode characteristics. Our results show that mixed-type unaligned SWCNTs processed in super-acid solvents can achieve state-of-the-art performance. The devices perform comparably to those fabricated from type or chiral-purified SWCNTs, despite what appear to be significant deviations from ideal diode behavior. Our results clarify a direct route for processing nanotube-silicon heterojunctions while providing additional insight into the underlying nature of these devices.

12.
ACS Appl Mater Interfaces ; 8(7): 4903-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791337

RESUMO

Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...