Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 32(5): 1603-10, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14535300

RESUMO

Elevated carbon dioxide (CO2) concentrations in the atmosphere can stimulate plant growth and yield, whereas ground-level ozone (O3) concentrations cause the opposite effect in many areas of the world. Recent experiments show that elevated CO2 can protect some plants from O3 stress, but this has not been tested for most crop species. Our objective was to determine if elevated CO2 protects Irish potato (Solanum tuberosum L.) from foliar injury and suppression of growth and yield caused by O3. An O3-resistant cultivar (Superior) and an O3-sensitive cultivar (Dark Red Norland) were exposed from within 10 d after emergence to maturity to mixtures of three CO2 and three O3 treatments in open-top field chambers. The three CO2 treatments were ambient (370 microL L(-1)) and two treatments with CO2 added to ambient CO2 for 24 h d(-1) (540 and 715 microL L(-1)). The O3 treatments were charcoal-filtered air (15 nL L(-1)), nonfiltered air (45 nL L(-1)), and nonfiltered air with O3 added for 12 h d(-1) (80 nL L(-1)). Elevated O3 and CO2 caused extensive foliar injury of Dark Red Norland, but caused only slight injury of Superior. Elevated CO2 increased growth and tuber yield of both cultivars, whereas elevated O3 generally suppressed growth and yield, mainly of Dark Red Norland. Elevated CO2 appeared to protect Dark Red Norland from O3-induced suppression of shoot, root, and tuber weight as measured at midseason but did not protect either cultivar from O3 stress at the final harvest. The results further illustrate the difficulty in predicting effects of O3 + CO2 mixtures based on the effects of the individual gases.


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/farmacologia , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Solanum/crescimento & desenvolvimento , Exposição Ambiental
2.
J Environ Qual ; 31(6): 2008-14, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12469851

RESUMO

Elevated CO2 concentrations expected in the 21st century can stimulate plant growth and yield, whereas tropospheric O3 suppresses plant growth and yield in many areas of the world. Recent experiments showed that elevated CO2 often protects plants from O3 stress, but this has not been tested for many important crop species including snap bean (Phaseolus vulgaris L.). The objective of this study was to determine if elevated CO2 protects snap bean from O3 stress. An O3-tolerant cultivar (Tenderette) and an O3-sensitive selection (S156) were exposed from shortly after emergence to maturity to mixtures of CO2 and O3 in open-top field chambers. The two CO2 treatments were ambient and ambient with CO2 added for 24 h d(-1) resulting in seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 366 and 697 microL L(-1), respectively. The two O3 treatments were charcoal-filtered air and nonfiltered air with O3 added for 12 h d(-1) to achieve seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 23 and 72 nL L(-1), respectively. Elevated CO2 significantly stimulated growth and pod weight of Tenderette and S156, whereas elevated O3 significantly suppressed growth and pod weight of S156 but not of Tenderette. The suppressive effect of elevated O3 on pod dry weight of S156 was approximately 75% at ambient CO2 and approximately 60% at elevated CO2 (harvests combined). This amount of protection from O3 stress afforded by elevated CO2 was much less than reported for other crop species. Extreme sensitivity to O3 may be the reason elevated CO2 failed to significantly protect S156 from O3 stress.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Dióxido de Carbono/farmacologia , Oxidantes Fotoquímicos/efeitos adversos , Ozônio/efeitos adversos , Phaseolus/crescimento & desenvolvimento , Exposição Ambiental
3.
Environ Pollut ; 91(1): 113-9, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-15091458

RESUMO

Two white clover (Trifolium repens L.) clones with varying sensitivity to O(3) are being developed as a system to indicate effects of ambient concentrations of tropospheric O(3) on plants. One clone (NC-S) is highly sensitive to O(3) and the other (NC-R) is highly resistant. The system relies on periodic measurement of foliar injury, foliar chlorophyll, and forage production of NC-S and NC-R grown in 15-liter pots throughout a summer season. Relative amounts of foliar injury and ratios (NC-S/NC-R) for chlorophyll and forage weight can be used to estimate biologically effective ambient O(3) concentrations. The effect of variation in rooting media formulation and fertilizer rate on response of NC-S and NC-R to ambient O(3) was determined in the present study. In the rooting medium experiment, clover was grown in three mixtures of sandy loam topsoil:course washed sand:Metro Mix 220 (ratios (by volume) of 2:1:1, 2:1:5, and 6:1:1). In the fertilizer experiment, clover was grown in the 2:1:1 medium at four fertilizer rates (soluble 5-11-26 (N-P-K) at 0.0, 0.5, 1.0, or 2.0 g per pot). Ozone caused more foliar injury, more chlorosis, and a greater decrease in forage production of NC-S than of NC-R in all studies. Rooting media treatments affected both clones similarly and occasional clone x media interactions were judged to be random. Forage production by NC-S, relative to that of NC-R, was generally greater in the 0.0 fertilizer treatment, but the forage ratios were similar at all other fertilizer treatments. The relative response of NC-S and NC-R to O(3) is fairly stable under cultural conditions that support normal plant growth.

4.
New Phytol ; 132(3): 483-92, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763644

RESUMO

Concentrations of soluble and bound phenolic compounds were measured in needles of 3-yr-old loblolly pine (Pinus taeda L.) trees exposed from May to November 1993 to a range of ozone (O3 ) concentrations in open-top field chambers, The treatments were charcoal-filtered air (CF). non-filtered air (NF), and NF air with O2 added at 1.5 times (NF 1.5) and 2(1 times (NF 2.0) the ambient O., concentration for 12 h daily. Average daily (0800-2000 hours) O3 concentrations in the CF. NF. NF 1.5 and NF 20 treatments were. 29. 47, 76 and 98 nl 1(-1) . respectively, for the 140 d treatment period. At the end of the treatment period, total phenolic and proanthocyanidin concentrations in the previous year's needles were 25-29% higher in the NF 2.0 treatment compared with the lower O3 treatments. Catechin concentration increased in the previous year's needles by as much as 81 % between the NF 2.0 treatment and the lower O3 treatments. Catechin is an effective antioxidant, and elevated levels might confer some protection against O3 injury. No significant differences in total phenolics and proanthocyanidins in the previous year's needles were detected among the remaining treatments, or among any O3 treatment for the current year's needles. Lignin content in needles of both years was not significantly affected by O3 exposure. Chances in the phenolic content of older needles in response to elevated O3 could alter plant-pathogen interactions and slow down microbiol decomposition, which could contribute to a decline in site soil quality.

5.
J Nematol ; 25(4 Suppl): 869-75, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19279855

RESUMO

The responses of selected clones of white clover (Trifolium repens) to simultaneous infection by the southern root-knot nematode (Meloidogyne incognita) and peanut stunt virus (PSV) were determined. Two white clover clones, which were resistant (NC-R) or sensitive (NC-S) to ozone injury, were evaluated. Plant growth and M. incognita reproduction were measured. Root, stolon, and top growth were reduced by PSV infection, which affected NC-R more than NC-S. Both clones were tolerant of M. incognita, but NC-R had less root galling and less nematode reproduction than NC-S, and thus was less susceptible to M. incognita. Reductions in root growth of plants infected with both M. incognita and PSV were greater than in plants infected by either pathogen alone. Nematode reproduction tended to be lower on PSV-infected plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...