Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 22(6): 458-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938661

RESUMO

Repulsive guidance molecules (RGMs) control crucial processes including cell motility, adhesion, immune-cell regulation and systemic iron metabolism. RGMs signal via the neogenin (NEO1) and the bone morphogenetic protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a new protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the crystal structure of the ternary BMP2-RGM-NEO1 complex, which, along with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM-NEO1 complex. Our results show how RGM acts as the central hub that links BMP and NEO1 and physically connects these fundamental signaling pathways.


Assuntos
Proteína Morfogenética Óssea 2/química , Moléculas de Adesão Celular Neuronais/química , Proteínas de Membrana/química , Multimerização Proteica , Proteína Morfogenética Óssea 2/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Cristalografia por Raios X , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica
2.
Science ; 341(6141): 77-80, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23744777

RESUMO

Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Fenômenos Biofísicos , Moléculas de Adesão Celular Neuronais/genética , Sequência Conservada , Cristalografia por Raios X , Humanos , Mutação , Oligopeptídeos/química , Estrutura Terciária de Proteína , Transdução de Sinais
3.
Prog Mol Biol Transl Sci ; 106: 189-221, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22340719

RESUMO

The integrated stress response (ISR) is an evolutionarily conserved homeostatic program activated by specific pathological states. These include amino acid deprivation, viral infection, iron deficiency, and the misfolding of proteins within the endoplasmic reticulum (ER), the so-called ER stress. Although apparently disparate, each of these stresses induces phosphorylation of a translation initiation factor, eIF2α, to attenuate new protein translation while simultaneously triggering a transcriptional program. This is achieved by four homologous stress-sensing kinases: GCN2, PKR, HRI, and PERK. In addition to these kinases, mammals possess two specific eIF2α phosphatases, GADD34 and CReP, which play crucial roles in the recovery of protein synthesis following the initial insult. They are not only important in embryonic development but also appear to play important roles in disease, particularly cancer. In this chapter, we discuss each of the eIF2α kinases, in turn, with particular emphasis on their regulation and the new insights provided by recent structural studies. We also discuss the potential for developing novel drug therapies that target the ISR.


Assuntos
Fosfoproteínas/fisiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico/fisiologia , Aminoácidos/metabolismo , Animais , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/fisiologia , Evolução Molecular , Heme/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Conformação Proteica , Proteína Fosfatase 1/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/fisiologia , Transcrição Gênica/fisiologia , Viroses/enzimologia , eIF-2 Quinase/química , eIF-2 Quinase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA