Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 43(1): 19-29, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15726921

RESUMO

Spatial variations in hydraulic conductivity (K) can significantly affect the transport of contaminants in ground water. Conventional field methods, however, rarely provide a description of these variations at the level of detail necessary for reliable transport predictions and effective remediation designs. A direct-push (DP) method, hydrostratigraphic profiling, has been developed to characterize the spatial variability of both electrical conductivity (EC) and hydraulic conductivity in unconsolidated formations in a cost-effective manner. This method couples a dual-rod approach for performing slug tests in DP equipment with high-resolution EC logging. The method was evaluated at an extensively studied site in the Kansas River floodplain. A series of profiles was performed on a surface grid, resulting in a detailed depiction of the three-dimensional distribution of EC and K. Good agreement was found between K estimates obtained from this approach and those obtained using other methods. The results of the field evaluation indicate that DP hydrostratigraphic profiling is a promising method for obtaining detailed information about spatial variations in subsurface properties without the need for permanent wells.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Poluentes Químicos da Água/análise , Condutividade Elétrica , Monitoramento Ambiental/instrumentação , Movimentos da Água
2.
J Contam Hydrol ; 69(3-4): 215-32, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028392

RESUMO

Discrete-depth sampling of inorganic groundwater chemistry is essential for a variety of site characterization activities. Although the mobility and rapid sampling capabilities of direct-push techniques have led to their widespread use for evaluating the distribution of organic contaminants, complementary methods for the characterization of spatial variations in geochemical conditions have not been developed. In this study, a direct-push-based approach for high-resolution inorganic chemical profiling was developed at a site where sharp chemical contrasts and iron-reducing conditions had previously been observed. Existing multilevel samplers (MLSs) that span a fining-upward alluvial sequence were used for comparison with the direct-push profiling. Chemical profiles obtained with a conventional direct-push exposed-screen sampler differed from those obtained with an adjacent MLS because of sampler reactivity and mixing with water from previous sampling levels. The sampler was modified by replacing steel sampling components with stainless-steel and heat-treated parts, and adding an adapter that prevents mixing. Profiles obtained with the modified approach were in excellent agreement with those obtained from an adjacent MLS for all constituents and parameters monitored (Cl, NO(3), Fe, Mn, DO, ORP, specific conductance and pH). Interpretations of site redox conditions based on field-measured parameters were supported by laboratory analysis of dissolved Fe. The discrete-depth capability of this approach allows inorganic chemical variations to be described at a level of detail that has rarely been possible. When combined with the mobility afforded by direct-push rigs and on-site methods of chemical analysis, the new approach is well suited for a variety of interactive site-characterization endeavors.


Assuntos
Monitoramento Ambiental/métodos , Solo , Poluentes da Água/análise , Abastecimento de Água , Oxirredução , Água/química
3.
Ground Water ; 41(5): 620-30, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-13678116

RESUMO

A new procedure is presented for the analysis of slug tests performed in partially penetrating wells in formations of high hydraulic conductivity. This approach is a simple, spreadsheet-based implementation of existing models that can be used for analysis of tests from confined or unconfined aquifers. Field examples of tests exhibiting oscillatory and nonoscillatory behavior are used to illustrate the procedure and to compare results with estimates obtained using alternative approaches. The procedure is considerably simpler than recently proposed methods for this hydrogeologic setting. Although the simplifications required by the approach can introduce error into hydraulic-conductivity estimates, this additional error becomes negligible when appropriate measures are taken in the field. These measures are summarized in a set of practical field guidelines for slug tests in highly permeable aquifers.


Assuntos
Modelos Teóricos , Abastecimento de Água , Água/química , Monitoramento Ambiental/métodos , Guias como Assunto , Permeabilidade
4.
Ground Water ; 40(1): 25-36, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11798043

RESUMO

The potential of direct-push technology for hydraulic characterization of saturated flow systems was investigated at a field site with a considerable degree of subsurface control. Direct-push installations were emplaced by attaching short lengths of screen (shielded and unshielded) to the bottom end of a tool string that was then advanced into the unconsolidated sediments. A series of constant-rate pumping tests were performed in a coarse sand and gravel aquifer using direct-push tool strings as observation wells. Very good agreement (within 4%) was found between hydraulic conductivity (K) estimates from direct-push installations and those from conventional wells. A program of slug tests was performed in direct-push installations using small-diameter adaptations of solid-slug and pneumatic methods. In a sandy silt interval of moderate hydraulic conductivity, K values from tests in a shielded screen tool were in excellent agreement (within 2%) with those from tests in a nearby well. In the coarse sand and gravel aquifer, K values were within 12% of those from multilevel slug tests at a nearby well. However, in the more permeable portions of the aquifer (K > 70 m/day), the smaller-diameter direct-push rods (0.016 m inner diameter [I.D.]) attenuated test responses, leading to an underprediction of K. In those conditions, use of larger-diameter rods (e.g., 0.038 m I.D.) is necessary to obtain kappa values representative of the formation. This investigation demonstrates that much valuable information can be obtained from hydraulic tests in direct-push installations. As with any type of hydraulic test, K estimates are critically dependent on use of appropriate emplacement and development procedures. In particular, driving an unshielded screen through a heterogeneous sequence will often lead to a buildup of low-K material that can be difficult to remove with standard development procedures.


Assuntos
Monitoramento Ambiental , Movimentos da Água , Desenho de Equipamento , Pressão , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...