Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Case Rep Oncol ; 16(1): 662-669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37933314

RESUMO

Immune checkpoint inhibitors (ICIs) have emerged as a novel class of anti-neoplastic agent in oncology. Their integration into practice has been accompanied by "immune-related adverse events" (irAEs) wherein off-target immune responses damage healthy tissues. Severe irAEs can cause irreversible organ dysfunction and death. Despite this, little is known about factors which predispose certain patients to develop irAEs or which precipitate their onset. Here, we report a case of a patient with melanoma who completed adjuvant immunotherapy, underwent elective hip replacement, and developed a rare rheumatologic irAE (remitting seronegative symmetrical synovitis with pitting edema) post-operatively. Mechanistically, we hypothesize that surgery contributed to irAE pathogenesis as a sensitizing event in which self-antigens were presented to an immune system with diminished peripheral tolerance in the context of recent ICI administration. This case highlights a need for future correlative analyses, investigating whether iatrogenic interventions such as surgery might be associated with irAE development.

2.
J Fish Biol ; 103(5): 1144-1162, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495557

RESUMO

Spawning phenology and associated migrations of fishes are often regulated by factors such as temperature and stream discharge, but flow regulation of mainstem rivers coupled with climate change might disrupt these cues and affect fitness. Flannelmouth sucker (Catostomus latipinnis) persisting in heavily modified river networks are known to spawn in tributaries that might provide better spawning habitat than neighboring mainstem rivers subject to habitat degradation (e.g., embedded sediments, altered thermal regimes, and disconnected floodplains). PIT tag data and radio telemetry were used to quantify the timing and duration of flannelmouth sucker tributary spawning migrations in relation to environmental cues in McElmo Creek, a tributary of the San Juan River in the American Southwest. We also tested the extent of the tributary migration and assessed mainstem movements prior to and after tributary migrations. Additionally, multiyear data sets of PIT detections from other tributaries in the Colorado River basin were used to quantify interannual and cross-site variation in the timing of flannelmouth sucker spawning migrations in relation to environmental cues. The arrival and residence times of fish spawning in McElmo Creek varied among years, with earlier migration and a 3-week increase in residence time in relatively wet years compared to drier years. Classification tree analysis suggested a combination of discharge- and temperature-determined arrival timing. Of fish PIT tagged in the fall, 56% tagged within 10 km of McElmo Creek spawned in the tributary the following spring, as did 60% of radio-tagged fish, with a decline in its use corresponding to increased distance of tagging location. A broader analysis of four tributaries in the Colorado River basin, including McElmo Creek, found photoperiod and temperature of tributary and mainstem rivers were the most important variables in determining migration timing, but tributary and mainstem discharge also aided in classification success. The largest tributary, the Little Colorado River, had more residential fish or fish that stayed for longer periods (median = 30 days), whereas McElmo Creek fish stayed an average of just 10 days in 2022. Our results generally suggest that higher discharge, across years or across sites, results in extended use of tributaries by flannelmouth suckers. Conservation actions that limit water extraction and maintain natural flow regimes in tributaries, while maintaining open connection with mainstem rivers, may benefit migratory species, including flannelmouth suckers.


Assuntos
Cipriniformes , Estados Unidos , Animais , Ecossistema , Rios , Estações do Ano
3.
Conserv Biol ; 37(1): e13993, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36047692

RESUMO

Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species' impacts, which may be particularly important under climate change. We used a spatially explicit metapopulation viability model to explore suppression strategies for ecologically damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary in Grand Canyon National Park. Our goals were to estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation; quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. Our models included scenarios targeting different life stages with spatially varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life stages. Brown trout population growth rates were most sensitive to changes in age 0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was 12 years compared with 4 with a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was achieved only through refocusing and increasing suppression. Our modeling approach improves understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies and, ultimately, maintenance of populations of endemic fishes.


Las especies invasoras pueden alterar dramáticamente un ecosistema, pero erradicarlas es complicado y suprimirlas es costoso una vez que están establecidas. Las incertidumbres en el potencial de expansión y el impacto de un invasor pueden derivar en una supresión retardada e inadecuada que permite el establecimiento. Los modelos de viabilidad meta poblacional pueden auxiliar en la planeación de estrategias para mejorar las respuestas ante especies invasoras y disminuir su impacto, lo cual puede ser particularmente importante ante el cambio climático. Usamos un modelo meta poblacional espacialmente explícito para explorar las estrategias de supresión usadas con la trucha café (Salmo trutta), una especie invasora y dañina establecida en el Río Colorado en el Parque Nacional del Gran Cañón. Nuestros objetivos fueron estimar la efectividad de las estrategias enfocadas en diferentes etapas de vida y subpoblaciones dentro de una meta población; cuantificar la efectividad de una respuesta rápida ante una nueva invasión en relación a retardar la acción hasta que ocurra el establecimiento; y estimar si los sistemas térmicos e hidrológicos relacionados con el cambio climático y la gestión de cuencas afectarán la viabilidad meta poblacional y alterarán la respuesta óptima de gestión en el futuro. Nuestros modelos incluyeron escenarios enfocados en diferentes etapas de vida con intensidades espacialmente variables de pesca eléctrica, destrucción de redes, cultivo incentivado de pescadores, piscicidas y un dique. La cuasi extinción (CE) sólo se obtuvo con una supresión a nivel meta poblacional enfocada en múltiples etapas de vida. Las tasas de crecimiento poblacional de la trucha fueron más sensibles a los cambios en edad cero y una gran mortalidad adulta. La duración de la supresión requerida para llegar a la CE para una subpoblación grande establecida fue de doce años en comparación con los cuatro de una respuesta rápida a una nueva invasión. Las subpoblaciones aisladas fueron vulnerables a la supresión; sin embargo, las subpoblaciones conectadas por medio de tributarios incrementaron la persistencia meta poblacional al fungir como refugios climáticos. La escasez de agua, cambios impulsores en el almacenamiento de la cuenca y el calentamiento subsecuente causarían declinaciones de la trucha, pero la CE meta poblacional sólo se logró con el reenfoque e incremento de la supresión. Nuestra estrategia de modelado mejora el entendimiento de las dinámicas meta poblacionales de la trucha café invasora, lo cual podría llevar a estrategias de supresión más enfocadas y efectivas y, finalmente, al mantenimiento de las poblaciones de peces endémicos. Exploración de alternativas a la supresión a escala meta poblacional de un invasor mundial en una red de ríos que experimenta el cambio climático.


Assuntos
Ecossistema , Rios , Animais , Mudança Climática , Conservação dos Recursos Naturais , Truta/fisiologia
4.
Ecol Appl ; 32(6): e2635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403769

RESUMO

Understanding the relative strengths of intrinsic and extrinsic factors regulating populations is a long-standing focus of ecology and critical to advancing conservation programs for imperiled species. Conservation could benefit from an increased understanding of factors influencing vital rates (somatic growth, recruitment, survival) in small, translocated populations, which is lacking owing to difficulties in long-term monitoring of rare species. Translocations, here defined as the transfer of wild-captured individuals from source populations to new habitats, are widely used for species conservation, but outcomes are often minimally monitored, and translocations that are monitored often fail. To improve our understanding of how translocated populations respond to environmental variation, we developed and tested hypotheses related to intrinsic (density dependent) and extrinsic (introduced rainbow trout Oncorhynchus mykiss, stream flow and temperature regime) causes of vital rate variation in endangered humpback chub (Gila cypha) populations translocated to Colorado River tributaries in the Grand Canyon (GC), USA. Using biannual recapture data from translocated populations over 10 years, we tested hypotheses related to seasonal somatic growth, and recruitment and population growth rates with linear mixed-effects models and temporal symmetry mark-recapture models. We combined data from recaptures and resights of dispersed fish (both physical captures and continuously recorded antenna detections) from throughout GC to test survival hypotheses, while accounting for site fidelity, using joint live-recapture/live-resight models. While recruitment only occurred in one site, which also drove population growth (relative to survival), evidence supported hypotheses related to density dependence in growth, survival, and recruitment, and somatic growth and recruitment were further limited by introduced trout. Mixed-effects models explained between 67% and 86% of the variation in somatic growth, which showed increased growth rates with greater flood-pulse frequency during monsoon season. Monthly survival was 0.56-0.99 and 0.80-0.99 in the two populations, with lower survival during periods of higher intraspecific abundance and low flood frequency. Our results suggest translocations can contribute toward the recovery of large-river fishes, but continued suppression of invasive fishes to enhance recruitment may be required to ensure population resilience. Furthermore, we demonstrate the importance of flooding to population demographics in food-depauperate, dynamic, invaded systems.


Assuntos
Inundações , Oncorhynchus mykiss , Animais , Ecossistema , Rios , Estações do Ano
5.
Environ Manage ; 63(6): 718-731, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972428

RESUMO

Water infrastructure updates at Grand Canyon National Park (GRCA) provide an opportunity to restore natural flow to Bright Angel Creek, adding an additional ~20% to baseflow. This creek provides habitat for endangered humpback chub (Gila cypha) and invasive brown trout (Salmo trutta). We assess how increased flow may alter habitat and how that change may impact native and nonnative species using physical habitat modeling and statistical analysis of stream temperature data. We used System for Environmental Flow Analysis to calculate the change in habitat area for both species in the lower 2.1 km of the creek before and after the increased flow. Results indicate a slight increase in available habitat for juveniles of both species and a slight decrease for spawning brown trout. We used regression modeling to relate daily average air temperature to stream temperature and periods of increased discharge during water system maintenance were used to model the temperatures during likely future conditions. Both high and low stream temperature were dampened due to the added water resulting in fewer days with suitable spawning temperature and more days with suitable growth temperature for humpback chub. Fewer suitable days for growth upstream but more suitable days downstream, were predicted for brown trout. Compared to other streams that sustain populations of humpback chub, flow conditions for Bright Angel Creek provide fewer days throughout the year with suitable temperatures, particularly during the winter months. Juvenile humpback chub rearing may improve through the restoration of flow however the presence of predatory brown trout complicates the net beneficial impact.


Assuntos
Ecossistema , Truta , Animais , Estações do Ano , Temperatura
6.
Inorg Chem ; 44(25): 9574-84, 2005 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-16323947

RESUMO

A series of metallocarboranes of the types rac-[M(CO)3(eta(5)-7-R-7,8-C2B9H11)]-, rac-[M(CO)3(eta(5)-7-R-8-R'-7,8-C2B9H11)]-, and rac-[M(CO)3(eta(5)-7-R-7,9-C2B9H11)]- (M=Re) were prepared by reacting [NEt4]2[Re(CO)3Br3] or [Re(CO)3(OH2)3]Br with the corresponding carboranes in the presence of aqueous solutions of either alkali metal or tetraalkylammonium fluoride salts. Carborane derivatives that were investigated included those containing pyridine, amino, carboxylic acid, carbohydrate, and aryl substituents. During the course of the research, it was discovered that Re metallocarboranes can be prepared directly from the respective closo-clusters under similar reaction conditions used with nido-carboranes. Reaction yields ranged from modest to excellent depending on the carborane isomer and the nature of the cage substituent(s). A crystal structure of an amine-substituted Re metallocarborane was obtained where the complex crystallized in the orthorhombic space group P2(1)2(1)2(1) with a=8.982(2) A, b=11.563(3) A, c=16.811(4) A, alpha=beta=gamma=90 degrees, V=1746.1(7) A3, Z=4, and R1=0.0684.


Assuntos
Compostos de Boro/química , Compostos Organometálicos/síntese química , Rênio/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA