Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38669354

RESUMO

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Assuntos
Anticorpos Monoclonais Humanizados , Malária Falciparum , Adulto , Criança , Feminino , Humanos , Masculino , Relação Dose-Resposta a Droga , Método Duplo-Cego , Doenças Endêmicas/prevenção & controle , Injeções Subcutâneas , Estimativa de Kaplan-Meier , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mali/epidemiologia , Plasmodium falciparum , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Terapia Diretamente Observada , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/uso terapêutico , Adulto Jovem , Pessoa de Meia-Idade
2.
Am J Trop Med Hyg ; 110(5): 1021-1028, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531104

RESUMO

The interpretation of a laboratory test result requires an appropriate reference range established in healthy subjects, and normal ranges may vary by factors such as geographic region, sex, and age. We examined hematological and clinical chemistry parameters in healthy residents at two rural vaccine trial sites: Bancoumana and Doneguebougou in Mali, West Africa. During screening of clinical studies in 2018 and 2019, peripheral blood samples from 1,192 apparently healthy individuals age 6 months to 82 years were analyzed at a laboratory accredited by the College of American Pathologists for a complete blood count, and creatinine and/or alanine aminotransferase levels. Based on manufacturers' reference range values, which are currently used in Malian clinical laboratories, abnormal values were common in this healthy population. In fact, 30.4% of adult participants had abnormal neutrophil levels and 19.8% had abnormal hemoglobin levels. Differences by sex were observed in those who were older, but not in those younger than 10 years, for several parameters, including hemoglobin, platelet, and absolute neutrophil counts in hematology, and creatinine in biochemistry. The site-specific reference intervals we report can be used in malaria vaccine clinical trials and other interventional studies, as well as in routine clinical care, to identify abnormalities in hematological and biochemical parameters among healthy Malian trial participants.


Assuntos
População Rural , Humanos , Mali/epidemiologia , Masculino , Feminino , Adolescente , Adulto , Criança , Pré-Escolar , Valores de Referência , Pessoa de Meia-Idade , Lactente , População Rural/estatística & dados numéricos , Adulto Jovem , Idoso , Idoso de 80 Anos ou mais , Fatores Etários , Fatores Sexuais , Hemoglobinas/análise , Creatinina/sangue , Laboratórios Clínicos , Contagem de Células Sanguíneas
3.
PLoS One ; 18(11): e0288713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917669

RESUMO

Antibodies reactive with the SARS-CoV-2 receptor-binding domain (RBD) of the spike protein are associated with viral neutralization, however low antibody titers, specifically against SARS-CoV-2 variants, may result in reduced viral immunity post naturally acquired infection. A cohort study comprised of 121 convalescent individuals from northern Nevada was conducted looking at anti-RBD antibody levels by enzyme-linked immunosorbent assay. Serum was collected from volunteers by staff at the University of Nevada, Reno School of Medicine Clinical Research Center and assessed for antibodies reactive to various SARS-CoV-2 RBD domains relevant to the time of the study (2020-2021). A nonpaired group of vaccinated individuals were assessed in parallel. The goal of the study was to identify antibody levels against the RBD subunit in convalescent and vaccinated individuals from northern Nevada.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos de Coortes , Nevada , Anticorpos , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes
4.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37571809

RESUMO

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Gravidez , Criança , Animais , Humanos , Feminino , Esporozoítos , Ciência Translacional Biomédica , Vacinas Atenuadas , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Imunização
5.
NPJ Vaccines ; 8(1): 108, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542029

RESUMO

Pfs25 is a leading antigen for a malaria transmission-blocking vaccine and shows moderate transmission-blocking activity and induction of rapidly decreasing antibody titers in clinical trials. A comprehensive definition of all transmission-reducing epitopes of Pfs25 will inform structure-guided design to enhance Pfs25-based vaccines, leading to potent transmission-blocking activity. Here, we compiled a detailed human antibody epitope map comprising epitope binning data and structures of multiple human monoclonal antibodies, including three new crystal structures of Pfs25 in complex with transmission-reducing antibodies from Malian volunteers immunized with Pfs25 conjugated to EPA and adjuvanted with AS01. These structures revealed additional epitopes in Pfs25 capable of reducing transmission and expanded this characterization to malaria-exposed humans. This work informs immunogen design to focus the antibody response to transmission-reducing epitopes of Pfs25, enabling development of more potent transmission-blocking vaccines for malaria.

6.
Lancet Infect Dis ; 23(11): 1266-1279, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37499679

RESUMO

BACKGROUND: Malaria transmission-blocking vaccines target mosquito-stage parasites and will support elimination programmes. Gamete vaccine Pfs230D1-EPA/Alhydrogel induced superior activity to zygote vaccine Pfs25-EPA/Alhydrogel in malaria-naive US adults. Here, we compared these vaccines in malaria-experienced Malians. METHODS: We did a pilot safety study then double-blind, block-randomised, comparator-controlled main-phase trial in malaria-intense Bancoumana, Mali. 18-50-year-old healthy non-pregnant, non-breastfeeding consenting adult residents were randomly assigned (1:1:1:1) to receive four doses at months 0, 1, 4·5, and 16·5 of either 47 µg Pfs25, 40 µg Pfs230D1 or comparator (Twinrix or Menactra)-all co-administered with normal saline for blinding-or 47 µg Pfs25 plus 40 µg Pfs230D1 co-administered. We documented safety and tolerability (primary endpoint in the as-treated populations) and immunogenicity (secondary endpoint in the as-treated populations: ELISA, standard-membrane-feeding assay, and mosquito direct skin feed assay). This trial is registered at ClinicalTrials.gov, NCT02334462. FINDINGS: Between March 19, and June 2, 2015, we screened 471 individuals. Of 225 enrolled for the pilot and main cohorts, we randomly assigned 25 participants to pilot safety cohort groups of five (20%) to receive a two-dose series of Pfs25-EPA/Alhydrogel (16 µg), Pfs230D1-EPA/Alhydrogel (15 µg) or comparator, followed by Pfs25-EPA/Alhydrogel (16 µg) plus Pfs230D1-EPA/Alhydrogel (15 µg) or comparator plus saline. For the main cohort, we enrolled 200 participants between May 11 and June 2, 2015, to receive a four-dose series of 47 µg Pfs25-EPA/Alhydrogel plus saline (n=50 [25%]; Pfs25), 40 µg Pfs230D1-EPA/Alhydrogel plus saline (n=49 [25%]; Pfs230D1), 47 µg Pfs25-EPA/Alhydrogel plus 40 µg Pfs230D1-EPA/Alhydrogel (n=50 [25%]; Pfs25 plus Pfs230D1), or comparator (Twinrix or Menactra) plus saline (n=51 [25%]). Vaccinations were well tolerated in the pilot safety and main phases. Most vaccinees became seropositive after two Pfs230D1 or three Pfs25 doses; peak titres increased with each dose thereafter (Pfs230D1 geometric mean: 77·8 [95% CI 56·9-106·3], 146·4 [108·3-198·0], and 410·2 [301·6-558·0]; Pfs25 geometric mean 177·7 [130·3-242·4] and 315·7 [209·9-474·6]). Functional activity (mean peak transmission-reducing activity) appeared for Pfs230D1 (74·5% [66·6-82·5]) and Pfs25 plus Pfs230D1 (68·6% [57·3-79·8]), after the third dose and after the fourth dose (88·9% [81·7-96·2] for Pfs230D1 and 85·0% [78·4-91·5] Pfs25 plus Pfs230D1) but not for Pfs25 (58·2% [49·1-67·3] after the third dose and 58·2% [48·5-67·9] after the fourth dose). Pfs230D1 transmission-reducing activity (73·7% [64·1-83·3]) persisted 10 weeks after the fourth dose. Transmission-reducing activity of 80% was estimated at 1659 ELISA units for Pfs25, 218 for Pfs230D1, and 223 for Pfs230D1 plus Pfs25. After 3850 direct skin feed assays, 35 participants (12 Pfs25, eight Pfs230D1, five Pfs25 plus Pfs230D1, and ten comparator) had transmitted parasites at least once. The proportion of positive assays in vaccine groups (Pfs25 33 [3%] of 982 [-0·013 to 0·014], Pfs230D1 22 [2%] of 954 [-0·005 to 0·027], and combination 11 [1%] of 940 [-0·024 to 0·002]) did not differ from that of the comparator (22 [2%] of 974), nor did Pfs230D1 and combination groups differ (-0·024 to 0·001). INTERPRETATION: Pfs230D1 but not Pfs25 vaccine induces durable serum functional activity in Malian adults. Direct skin feed assays detect parasite transmission to mosquitoes but increased event rates are needed to assess vaccine effectiveness. FUNDING: Intramural Research Program of the National Institute of Allergy and Infectious Diseases and US National Institutes of Health.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Vacinas Meningocócicas , Animais , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Hidróxido de Alumínio , Plasmodium falciparum , Vacinas Antimaláricas/efeitos adversos , Método Duplo-Cego , Imunogenicidade da Vacina
7.
Immunity ; 56(2): 433-443.e5, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792576

RESUMO

Pfs230 domain 1 (Pfs230D1) is an advanced malaria transmission-blocking vaccine antigen demonstrating high functional activity in clinical trials. However, the structural and functional correlates of transmission-blocking activity are not defined. Here, we characterized a panel of human monoclonal antibodies (hmAbs) elicited in vaccinees immunized with Pfs230D1. These hmAbs exhibited diverse transmission-reducing activity, yet all bound to Pfs230D1 with nanomolar affinity. We compiled epitope-binning data for seventeen hmAbs and structures of nine hmAbs complexes to construct a high-resolution epitope map and revealed that potent transmission-reducing hmAbs bound to one face of Pfs230D1, while non-potent hmAbs bound to the opposing side. The structure of Pfs230D1D2 revealed that non-potent transmission-reducing epitopes were occluded by the second domain. The hmAb epitope map delineated binary hmAb combinations that synergized for extremely high-potency, transmission-reducing activity. This work provides a high-resolution guide for structure-based design of enhanced immunogens and informs diagnostics that measure the transmission-reducing response.


Assuntos
Vacinas Antimaláricas , Humanos , Epitopos , Anticorpos Neutralizantes , Antígenos , Anticorpos Antivirais
8.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317783

RESUMO

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Assuntos
Anticorpos Monoclonais Humanizados , Antimaláricos , Malária Falciparum , Adulto , Humanos , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Cefaleia/induzido quimicamente
10.
Nat Commun ; 13(1): 3390, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697668

RESUMO

Controlled human malaria infection (CHMI) has supported Plasmodium falciparum (Pf) malaria vaccine development by providing preliminary estimates of vaccine efficacy (VE). Because CHMIs generally use Pf strains similar to vaccine strains, VE against antigenically heterogeneous Pf in the field has been required to establish VE. We increased the stringency of CHMI by selecting a Brazilian isolate, Pf7G8, which is genetically distant from the West African parasite (PfNF54) in our PfSPZ vaccines. Using two regimens to identically immunize US and Malian adults, VE over 24 weeks in the field was as good as or better than VE against CHMI at 24 weeks in the US. To explain this finding, here we quantify differences in the genome, proteome, and predicted CD8 T cell epitopes of PfNF54 relative to 704 Pf isolates from Africa and Pf7G8. We show that Pf7G8 is more distant from PfNF54 than any African isolates tested. We propose VE against Pf7G8 CHMI for providing pivotal data for malaria vaccine licensure for travelers to Africa, and potentially for endemic populations, because the genetic distance of Pf7G8 from the Pf vaccine strain makes it a stringent surrogate for Pf parasites in Africa.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , África/epidemiologia , Animais , Epitopos de Linfócito T/genética , Humanos , Vacinas Antimaláricas/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Esporozoítos
11.
Lancet Infect Dis ; 22(3): 377-389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34801112

RESUMO

BACKGROUND: WHO recently approved a partially effective vaccine that reduces clinical malaria in children, but increased vaccine activity is required to pursue malaria elimination. A phase 1 clinical trial was done in Mali, west Africa, to assess the safety, immunogenicity, and protective efficacy of a three-dose regimen of Plasmodium falciparum sporozoite (PfSPZ) Vaccine (a metabolically active, non-replicating, whole malaria sporozoite vaccine) against homologous controlled human malaria infection (CHMI) and natural P falciparum infection. METHODS: We recruited healthy non-pregnant adults aged 18-50 years in Donéguébougou, Mali, and surrounding villages (Banambani, Toubana, Torodo, Sirababougou, Zorokoro) for an open-label, dose-escalation pilot study and, thereafter, a randomised, double-blind, placebo-controlled main trial. Pilot study participants were enrolled on an as-available basis to one group of CHMI infectivity controls and three staggered vaccine groups receiving: one dose of 4·5 × 105, one dose of 9 × 105, or three doses of 1·8 × 106 PfSPZ via direct venous inoculation at approximately 8 week intervals, followed by homologous CHMI 5 weeks later with infectious PfSPZ by direct venous inoculation (PfSPZ Challenge). Main cohort participants were stratified by village and randomly assigned (1:1) to receive three doses of 1·8 × 106 PfSPZ or normal saline at 1, 13, and 19 week intervals using permuted block design by the study statistician. The primary outcome was safety and tolerability of at least one vaccine dose; the secondary outcome was vaccine efficacy against homologous PfSPZ CHMI (pilot study) or against naturally transmitted P falciparum infection (main study) measured by thick blood smear. Combined artesunate and amodiaquine was administered to eliminate pre-existing parasitaemia. Outcomes were analysed by modified intention to treat (mITT; including all participants who received at least one dose of investigational product; safety and vaccine efficacy) and per protocol (vaccine efficacy). This trial is registered with ClinicalTrials.gov, number NCT02627456. FINDINGS: Between Dec 20, 2015, and April 30, 2016, we enrolled 56 participants into the pilot study (five received the 4·5 × 105 dose, five received 9 × 105, 30 received 1·8 × 106, 15 were CHMI controls, and one withdrew before vaccination) and 120 participants into the main study cohort with 60 participants assigned PfSPZ Vaccine and 60 placebo in the main study. Adverse events and laboratory abnormalities post-vaccination in all dosing groups were few, mainly mild, and did not differ significantly between vaccine groups (all p>0·05). Unexpected severe transaminitis occured in four participants: one participant in pilot phase that received 1·8 × 106 PfSPZ Vaccine, one participant in main phase that received 1·8 × 106 PfSPZ Vaccine, and two participants in the main phase placebo group. During PfSPZ CHMI, approximately 5 weeks after the third dose of 1·8 × 106 PfSPZ, none of 29 vaccinees and one of 15 controls became positive on thick blood smear; subsequent post-hoc PCR analysis for submicroscopic blood stage infections detected P falciparum parasites in none of the 29 vaccine recipients and eight of 15 controls during CHMI. In the main trial, 32 (58%) of 55 vaccine recipients and 42 (78%) of 54 controls became positive on thick blood smear during 24-week surveillance after vaccination. Vaccine efficacy (1-hazard ratio) was 0·51 per protocol (95% CI 0·20-0·70; log-rank p=0·0042) and 0·39 by mITT (0·04-0·62; p=0·033); vaccine efficacy (1-risk ratio) was 0·24 per-protocol (0·02-0·41; p=0·031) and 0·22 mITT (0·01-0·39; p=0·041). INTERPRETATION: A three-dose regimen of PfSPZ Vaccine was safe, well tolerated, and conferred 51% vaccine efficacy against intense natural P falciparum transmission, similar to 52% vaccine efficacy reported for a five-dose regimen in a previous trial. FUNDING: US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Sanaria. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adolescente , Adulto , Animais , Criança , Método Duplo-Cego , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Mali , Pessoa de Meia-Idade , Projetos Piloto , Plasmodium falciparum , Estações do Ano , Esporozoítos , Adulto Jovem
12.
Nature ; 595(7866): 289-294, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194041

RESUMO

The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.


Assuntos
Anticorpos Neutralizantes/imunologia , Fígado/imunologia , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/imunologia , Vacinas Atenuadas/imunologia , Adulto , Animais , Formação de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Estágios do Ciclo de Vida/imunologia , Malária/sangue , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/química , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Vacinação/efeitos adversos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/química
13.
Nat Commun ; 12(1): 1750, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741942

RESUMO

Malaria elimination requires tools that interrupt parasite transmission. Here, we characterize B cell receptor responses among Malian adults vaccinated against the first domain of the cysteine-rich 230 kDa gamete surface protein Pfs230, a key protein in sexual stage development of P. falciparum parasites. Among nine Pfs230 human monoclonal antibodies (mAbs) that we generated, one potently blocks transmission to mosquitoes in a complement-dependent manner and reacts to the gamete surface; the other eight show only low or no blocking activity. The structure of the transmission-blocking mAb in complex with vaccine antigen reveals a large discontinuous conformational epitope, specific to domain 1 of Pfs230 and comprising six structural elements in the protein. The epitope is conserved, suggesting the transmission-blocking mAb is broadly functional. This study provides a rational basis to improve malaria vaccines and develop therapeutic antibodies for malaria elimination.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antiprotozoários/farmacologia , Epitopos/imunologia , Células Germinativas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Adulto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Sítios de Ligação , Células Cultivadas , Epitopos/química , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia
14.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561016

RESUMO

BACKGROUNDVaccines that block human-to-mosquito Plasmodium transmission are needed for malaria eradication, and clinical trials have targeted zygote antigen Pfs25 for decades. We reported that a Pfs25 protein-protein conjugate vaccine formulated in alum adjuvant induced serum functional activity in both US and Malian adults. However, antibody levels declined rapidly, and transmission-reducing activity required 4 vaccine doses. Functional immunogenicity and durability must be improved before advancing transmission-blocking vaccines further in clinical development. We hypothesized that the prefertilization protein Pfs230 alone or in combination with Pfs25 would improve functional activity.METHODSTransmission-blocking vaccine candidates based on gamete antigen Pfs230 or Pfs25 were conjugated with Exoprotein A, formulated in Alhydrogel, and administered to mice, rhesus macaques, and humans. Antibody levels were measured by ELISA and transmission-reducing activity was assessed by the standard membrane feeding assay.RESULTSPfs25-EPA/Alhydrogel and Pfs230D1-EPA/Alhydrogel induced similar serum functional activity in mice, but Pfs230D1-EPA induced significantly greater activity in rhesus monkeys that was enhanced by complement. In US adults, 2 vaccine doses induced complement-dependent activity in 4 of 5 Pfs230D1-EPA/Alhydrogel recipients but no significant activity in 5 Pfs25-EPA recipients, and combination with Pfs25-EPA did not increase activity over Pfs230D1-EPA alone.CONCLUSIONThe complement-dependent functional immunogenicity of Pfs230D1-EPA represents a significant improvement over Pfs25-EPA in this comparative study. The rhesus model is more predictive of the functional human immune response to Pfs230D1 than is the mouse model.TRIAL REGISTRATIONClinicalTrials.gov NCT02334462.FUNDINGIntramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Assuntos
Hidróxido de Alumínio/administração & dosagem , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/administração & dosagem , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/imunologia , Proteínas de Protozoários/administração & dosagem , Adulto , Animais , Antígenos de Protozoários/imunologia , Feminino , Humanos , Macaca mulatta , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia
15.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33048842

RESUMO

Plasma antimalarial Ab can mediate antiparasite immunity but has not previously been characterized at the molecular level. Here, we develop an innovative strategy to characterize humoral responses by integrating profiles of plasma immunoglobulins (IGs) or Abs with those expressed on B cells as part of the B cell receptor. We applied this strategy to define plasma IG and to determine variable (V) gene usage after vaccination with the Plasmodium falciparum zygote antigen Pfs25. Using proteomic tools coupled with bulk immunosequencing data, we determined human antigen-binding fragment [F(ab')2] peptide sequences from plasma IG of adults who received 4 doses of Pfs25-EPA/Alhydrogel. Specifically, Pfs25 antigen-specific F(ab')2 peptides (Pfs25-IG) were aligned to cDNA sequences of IG heavy (IGH) chain complementarity determining region 3 from a data set generated by total peripheral B cell immunosequencing of the entire vaccinated population. IGHV4 was the most commonly identified IGHV subgroup of Pfs25-IG, a pattern that was corroborated by V heavy/V light chain sequencing of Pfs25-specific single B cells from 5 vaccinees and by matching plasma Pfs25-IG peptides and V-(D)-J sequences of Pfs25-specific single B cells from the same donor. Among 13 recombinant human mAbs generated from IG sequences of Pfs25-specific single B cells, a single IGHV4 mAb displayed strong neutralizing activity, reducing the number of P. falciparum oocysts in infected mosquitoes by more than 80% at 100 µg/mL. Our approach characterizes the human plasma Ab repertoire in response to the Pfs25-EPA/Alhydrogel vaccine and will be useful for studying circulating Abs in response to other vaccines as well as those induced during infections or autoimmune disorders.


Assuntos
Anticorpos Antiprotozoários/sangue , Antimaláricos/imunologia , Linfócitos B/imunologia , Imunoglobulinas/sangue , Malária Falciparum/sangue , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antimaláricos/administração & dosagem , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunoglobulinas/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Vacinação , Adulto Jovem
16.
Malar J ; 19(1): 323, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883286

RESUMO

BACKGROUND: The recent expansion of tools designed to accurately quantify malaria parasite-produced antigens has enabled us to evaluate the performance of rapid diagnostic tests (RDTs) as a function of the antigens they detect-typically histidine rich protein 2 (HRP2) or lactate dehydrogenase (LDH). METHODS: For this analysis, whole blood specimens from a longitudinal study in Bancoumana, Mali were used to evaluate the performance of the ultra-sensitive HRP2-based Alere™ Malaria Ag P.f RDT (uRDT). The samples were collected as part of a transmission-blocking vaccine trial in a high transmission region for Plasmodium falciparum malaria. Furthermore, antigen dynamics after successful anti-malarial drug treatment were evaluated in these samples using the Q-Plex Human Malaria Array (4-Plex) to quantify antigen concentrations. RESULTS: The uRDT had a 50% probability of a positive result at 207 pg/mL HRP2 [95% credible interval (CrI) 160-268]. Individuals with symptomatic infection remained positive by uRDT for a median of 33 days [95% confidence interval (CI) 28-47] post anti-malarial drug treatment. Biphasic exponential decay models accurately captured the population level post-treatment dynamics of both HRP2 and Plasmodium LDH (pLDH), with the latter decaying more rapidly. Motivated by these differences in rates of decay, a novel algorithm that used HRP2:pLDH ratios to predict if an individual had active versus recently cleared P. falciparum infection was developed. The algorithm had 77.5% accuracy in correctly classifying antigen-positive individuals as those with and without active infection. CONCLUSIONS: These results characterize the performance of the ultra-sensitive RDT and demonstrate the potential for emerging antigen-quantifying technologies in the field of malaria diagnostics to be helpful tools in distinguishing between active versus recently cleared malaria infections.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Testes Diagnósticos de Rotina/estatística & dados numéricos , L-Lactato Desidrogenase/isolamento & purificação , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Adulto , Humanos , Mali , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
17.
Clin Infect Dis ; 71(6): 1481-1490, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31621832

RESUMO

BACKGROUND: Chemoprophylaxis vaccination with sporozoites (CVac) with chloroquine induces protection against a homologous Plasmodium falciparum sporozoite (PfSPZ) challenge, but whether blood-stage parasite exposure is required for protection remains unclear. Chloroquine suppresses and clears blood-stage parasitemia, while other antimalarial drugs, such as primaquine, act against liver-stage parasites. Here, we evaluated CVac regimens using primaquine and/or chloroquine as the partner drug to discern whether blood-stage parasite exposure impacts protection against homologous controlled human malaria infection. METHODS: In a Phase I, randomized, partial double-blind, placebo-controlled study of 36 malaria-naive adults, all CVac subjects received chloroquine prophylaxis and bites from 12-15 P. falciparum-infected mosquitoes (CVac-chloroquine arm) at 3 monthly iterations, and some received postexposure primaquine (CVac-primaquine/chloroquine arm). Drug control subjects received primaquine, chloroquine, and uninfected mosquito bites. After a chloroquine washout, subjects, including treatment-naive infectivity controls, underwent homologous, PfSPZ controlled human malaria infection and were monitored for parasitemia for 21 days. RESULTS: No serious adverse events occurred. During CVac, all but 1 subject in the study remained blood-smear negative, while only 1 subject (primaquine/chloroquine arm) remained polymerase chain reaction-negative. Upon challenge, compared to infectivity controls, 3/3 chloroquine arm subjects displayed delayed patent parasitemia (P = .01) but not sterile protection, while 3/11 primaquine/chloroquine subjects remained blood-smear negative. CONCLUSIONS: CVac-primaquine/chloroquine is safe and induces sterile immunity to P. falciparum in some recipients, but a single 45 mg dose of primaquine postexposure does not completely prevent blood-stage parasitemia. Unlike previous studies, CVac-chloroquine did not produce sterile immunity. CLINICAL TRIALS REGISTRATION: NCT01500980.


Assuntos
Antimaláricos , Malária Falciparum , Adulto , Animais , Antimaláricos/uso terapêutico , Quimioprevenção , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Esporozoítos , Vacinação
18.
Am J Trop Med Hyg ; 100(6): 1466-1476, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017084

RESUMO

18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2-3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1-8.1 days) than blood smears (11.0 days; 95% CI: 10.3-11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6-13.3 days). Discrepant analysis showed that the risk of a blood smear-positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.


Assuntos
Malária/diagnóstico , Plasmodium/genética , RNA de Protozoário/genética , RNA Ribossômico 18S/sangue , Biomarcadores/sangue , Humanos , Reação em Cadeia da Polimerase Multiplex , Plasmodium/isolamento & purificação , RNA Ribossômico 18S/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Malar J ; 18(1): 69, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866943

RESUMO

BACKGROUND: Immunity that limits malarial disease is acquired over time, but adults living in endemic areas continue to become infected and can require treatment for clinical illness. Gamma delta (γδ) T cells, particularly the Vδ2+ subset, have been associated with development of clinical malaria in children. In this study, the dynamics of total γδ T cells, Vδ2+ and Vδ2- T cells were measured during a malaria transmission season in Malian adults. METHODS: This study explored γδ T cell dynamics and Plasmodium falciparum infection outcomes over the course of the malaria transmission season in Malian adults enrolled in the placebo arm of a double-blind randomized vaccine trial. All volunteers were treated with anti-malarial drugs prior to the start of the transmission season and blood smears were assessed for P. falciparum infection every 2 weeks from July 2014 to January 2015. The study participants were stratified as either asymptomatic infections or clinical malaria cases. Vδ2+ and Vδ2- γδ T cell frequencies and activation (as measured by CD38 expression) were measured in all study participants at baseline and then every 2 months using a whole blood flow cytometry assay. RESULTS: Forty of the forty-three subjects became infected with P. falciparum and, of those, 21 individuals were diagnosed with clinical malaria at least once during the season. The γδ T cell percentage and activation increased over the duration of the transmission season. Both the Vδ2+ and Vδ2- γδ T cells were activated by P. falciparum infection. CONCLUSION: γδ T cells increased during a malaria transmission season and this expansion was noted in both the Vδ2+ and Vδ2- γδ T cells. However, neither expansion or activation of either γδ T cell subsets discriminated study participants that had asymptomatic infections from those that had clinical malaria cases.


Assuntos
Linfócitos Intraepiteliais/imunologia , Malária Falciparum/imunologia , Malária Falciparum/patologia , Plasmodium falciparum/imunologia , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Células Sanguíneas , Feminino , Humanos , Estudos Longitudinais , Masculino , Mali , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
20.
Vaccine ; 37(6): 763-770, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621913

RESUMO

Pregnant women are highly susceptible to Plasmodium falciparum malaria, leading to substantial maternal, perinatal, and infant mortality. While malaria vaccine development has made significant progress in recent years, no trials of malaria vaccines have ever been conducted in pregnant women. In December 2016, an expert meeting was convened at NIAID, NIH, in Rockville, Maryland to deliberate on the rationale and design of malaria vaccine trials in pregnant women. The discussions highlighted the progress made over recent years in the field of maternal immunization for other infectious diseases, and the evolving regulatory and ethical environment, all of which support a new emphasis on testing malaria vaccines that offer direct benefits to pregnant women. Initial safety and immunogenicity studies of malaria vaccines will be conducted in non-pregnant adult volunteers. Subsequently, efficacy trials involving pregnant women will likely be conducted in malaria-endemic and often resource-poor environments where sufficiently high malaria incidence will allow vaccine activity to be measured. Such trials will need to meet all international standards to ensure the safety of mother and offspring, under oversight of appropriate ethical and regulatory bodies. The convened experts drafted a clinical development plan to test a malaria vaccine product during pregnancy, using as a case study PfSPZ Vaccine being developed by Sanaria Inc. that is currently in phase 2 testing. Following the expert recommendations, a pregnancy registry has been initiated in Ouelessebougou, Mali, to provide baseline information on maternal and fetal outcomes as a context for evaluating PfSPZ Vaccine safety in the future, and new regimens are being assessed that will be suitable for evaluation in pregnant women.


Assuntos
Ensaios Clínicos como Assunto/ética , Experimentação Humana/ética , Vacinas Antimaláricas/administração & dosagem , Gestantes , Vacinação/ética , Congressos como Assunto , Feminino , Humanos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Mali , Maryland , National Institute of Allergy and Infectious Diseases (U.S.) , Gravidez , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...