Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng ; 14: 20417314231185858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435573

RESUMO

Induced pluripotent stem cells (iPSCs) have enormous potential in producing human tissues endlessly. We previously reported that type V collagen (COL5), a pancreatic extracellular matrix protein, promotes islet development and maturation from iPSCs. In this study, we identified a bioactive peptide domain of COL5, WWASKS, through bioinformatic analysis of decellularized pancreatic ECM (dpECM)-derived collagens. RNA-sequencing suggests that WWASKS induces the formation of pancreatic endocrine progenitors while suppressing the development of other types of organs. The expressions of hypoxic genes were significantly downregulated in the endocrine progenitors formed under peptide stimulation. Furthermore, we unveiled an enhancement of iPSC-derived islets' (i-islets) glucose sensitivity under peptide stimulation. These i-islets secrete insulin in a glucose responsive manner. They were comprised of α, ß, δ, and γ cells and were assembled into a tissue architecture similar to that of human islets. Mechanistically, the peptide is able to activate the canonical Wnt signaling pathway, permitting the translocation of ß-catenin from the cytoplasm to the nucleus for pancreatic progenitor development. Collectively, for the first time, we demonstrated that an ECM-derived peptide dictates iPSC fate toward the generation of endocrine progenitors and subsequent islet organoids.

2.
Transl Res ; 250: 68-83, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772687

RESUMO

Almost 50 years ago, scientists developed the bi-hormonal abnormality hypothesis, stating that diabetes is not caused merely by the impaired insulin signaling. Instead, the presence of inappropriate level of glucagon is a prerequisite for the development of type 1 diabetes (T1D). It is widely understood that the hormones insulin and glucagon, secreted by healthy ß and α cells respectively, operate in a negative feedback loop to maintain the body's blood sugar levels. Despite this fact, traditional T1D treatments rely solely on exogenous insulin injections. Furthermore, research on cell-based therapies and stem-cell derived tissues tends to focus on the replacement of ß cells alone. In vivo, the pancreas is made up of 4 major endocrine cell types, that is, insulin-producing ß cells, glucagon-producing α cells, somatostatin-producing δ cells, and pancreatic polypeptide-producing γ cells. These distinct cell types are involved synergistically in regulating islet functions. Therefore, it is necessary to produce a pancreatic islet organoid in vitro consisting of all these cell types that adequately replaces the function of the native islets. In this review, we describe the unique function of each pancreatic endocrine cell type and their interactions contributing to the maintenance of normoglycemia. Furthermore, we detail current sources of whole islets and techniques for their long-term expansion and culture. In addition, we highlight a vast potential of the pancreatic islet organoids for transplantation and diabetes research along with updated new approaches for successful transplantation using stem cell-derived islet organoids.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Organoides , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...