Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 190: 108925, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137688

RESUMO

The temperature rise and increases in extreme heat events related to global climate change is a growing public health threat. Populations in temperate climates, including the UK, must urgently adapt to increased hot weather as current infrastructure primarily focusses on resilience to cold. As we adapt, care should be taken to ensure existing health inequalities are reduced. Lessons can be learned from regions that experience warmer climates and applied to adaptation in the UK. We identified known indicators of heat-health risk and explored their distribution across area level income for London. Understanding these indicators and their distributions across populations can support the development of interventions that have the dual aim of improving health and reducing inequalities. An exploratory analysis was conducted for each indicator at neighbourhood level to assess existence of disparities in their distributions across London. A systems-thinking approach was employed to deduce if these amount to systemic inequalities in heat risk, whereby those most exposed to heat are more susceptible and less able to adapt. Using this information, we proposed interventions and made recommendations for their implementation. We find inequalities across indicators relating to exposure, vulnerability, and adaptive capacity. Including inequalities in urban greening and access to greenspace, physical and mental health and access to communication and support. Through a system diagram we demonstrate how these indicators interact and suggest that systemic inequalities in risk exist and will become more evident as exposure increases with rising temperatures, depending on how we adapt. We use this information to identify barriers to the effective implementation of adaptation strategies and make recommendations on the implementation of interventions. This includes effective and wide-reaching communication considering the various channels and accessibility requirements of the population and consideration of all dwelling tenures when implementing policies relating to home improvements in the context of heat.


Assuntos
Mudança Climática , Temperatura Alta , Londres , Humanos , Fatores Socioeconômicos , Disparidades nos Níveis de Saúde
2.
Environ Res Lett ; 19(9): 094047, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39169924

RESUMO

The United Kingdom experienced its most extreme heatwave to date during late July 2022, with maximum air temperatures exceeding 40 °C recorded for the first time in history on July 19th. High ambient temperatures have been statistically shown to lead to increased mortality. Higher nighttime temperatures that occur in more urbanised areas, called the urban heat island (UHI), may contribute to the mortality burden of heat. In this study, we applied health impact assessment methods with advanced urban climate modelling to estimate what contribution the UHI had on the mortality impact of the 10-25 July 2022 heatwave in Greater London. Estimated mortality due to heat and due to the UHI were compared with estimated mortality due to air pollution in the same period, based on monitored concentrations. We estimate that of the 1773 deaths in Greater London in this period 370 (95% confidence interval 328-410) could be attributed to heat. We estimate that 38% of these heat-related deaths could be attributed to the UHI. In the same period is estimate deaths attributable to PM2.5 were 20.6 (10.4-30.8) and to ozone were 52.3 (95% confidence interval 18.6-85.2). Despite not contributing to the record-breaking maximum air temperature observed during this period, the UHI may have contributed to the heatwave's mortality burden through raised nighttime temperature. While air pollutant concentrations were elevated during the period, deaths attributable to air pollution were relatively few compared to deaths attributable to heat.

3.
Environ Res ; 259: 119565, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971356

RESUMO

BACKGROUND: Exposure to heat and cold poses a serious threat to human health. In the UK, hotter summers, milder winters and an ageing population will shift how populations experience temperature-related health burdens. Estimating future burdens can provide insights on the drivers of temperature-related health effects and removing biases in temperature projections is an essential step to generating these estimates, however, the impact of various methods of correction is not well examined. METHODS: We conducted a detailed health impact assessment by estimating mortality attributable to temperature at a baseline period (2007-2018) and in future decades (2030s, 2050s and 2070s). Epidemiological exposure-response relationships were derived for all England regions and UK countries, to quantify cold and heat risk, and temperature thresholds where mortality increases. UK climate projections 2018 (UKCP18)were bias-corrected using three techniques: correcting for mean bias (shift or SH), variability (bias-correction or BC) and extreme values (quantile mapping or QM). These were applied in the health impact assessment, alongside consideration of population ageing and growth to estimate future temperature-related mortality. FINDINGS: In the absence of adaptation and assuming a high-end emissions scenario (RCP8.5), annual UK temperature-related mortality is projected to increase, with substantial differences in raw vs. calibrated projections for heat-related mortality, but smaller differences for cold-related mortality. The BC approach gave an estimated 29 deaths per 100,000 in the 2070s, compared with 50 per 100,000 using uncorrected future temperatures. We also found population ageing may exert a bigger impact on future mortality totals than the impact from future increases in temperature alone. Estimating future health burdens associated with heat and cold is an important step towards equipping decision-makers to deliver suitable care to the changing population. Correcting inherent biases in temperature projections can improve the accuracy of projected health burdens to support health protection measures and long-term resilience planning.


Assuntos
Mudança Climática , Mortalidade , Humanos , Reino Unido/epidemiologia , Mortalidade/tendências , Temperatura Alta/efeitos adversos , Previsões , Temperatura Baixa/efeitos adversos , Temperatura
4.
Nat Commun ; 15(1): 4828, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902290

RESUMO

Personal weather stations (PWS) can provide useful data on urban climates by densifying the number of weather measurements across major cities. They do so at a lower cost than official weather stations by national meteorological services. Despite the increasing use of PWS data, little attention has yet been paid to the underlying socio-economic and environmental inequalities in PWS coverage. Using social deprivation, demographic, and environmental indicators in England and Wales, we characterize existing inequalities in the current coverage of PWS. We find that there are fewer PWS in more deprived areas which also observe higher proportions of ethnic minorities, lower vegetation coverage, higher building height and building surface fraction, and lower proportions of inhabitants under 65 years old. This implies that data on urban climate may be less reliable or more uncertain in particular areas, which may limit the potential for climate adaptation and empowerment in those communities.

5.
Environ Res Lett ; 19(5): 054004, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616845

RESUMO

Increasing temperatures and more frequent heatwave events pose threats to population health, particularly in urban environments due to the urban heat island (UHI) effect. Greening, in particular planting trees, is widely discussed as a means of reducing heat exposure and associated mortality in cities. This study aims to use data from personal weather stations (PWS) across the Greater London Authority to understand how urban temperatures vary according to tree canopy coverage and estimate the heat-health impacts of London's urban trees. Data from Netatmo PWS from 2015-2022 were cleaned, combined with official Met Office temperatures, and spatially linked to tree canopy coverage and built environment data. A generalized additive model was used to predict daily average urban temperatures under different tree canopy coverage scenarios for historical and projected future summers, and subsequent health impacts estimated. Results show areas of London with higher canopy coverage have lower urban temperatures, with average maximum daytime temperatures 0.8 °C and minimum temperatures 2.0 °C lower in the top decile versus bottom decile canopy coverage during the 2022 heatwaves. We estimate that London's urban forest helped avoid 153 heat attributable deaths from 2015-2022 (including 16 excess deaths during the 2022 heatwaves), representing around 16% of UHI-related mortality. Increasing tree coverage 10% in-line with the London strategy would have reduced UHI-related mortality by a further 10%, while a maximal tree coverage would have reduced it 55%. By 2061-2080, under RCP8.5, we estimate that London's current tree planting strategy can help avoid an additional 23 heat-attributable deaths a year, with maximal coverage increasing this to 131. Substantial benefits would also be seen for carbon storage and sequestration. Results of this study support increasing urban tree coverage as part of a wider public health effort to mitigate high urban temperatures.

6.
Environ Int ; 187: 108667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642505

RESUMO

Physical activity (PA) reduces the risk of several non-communicable diseases (NCDs). Natural environments support recreational PA. Using data including a representative cross-sectional survey of the English population, we estimated the annual value of nature-based PA conducted in England in 2019 in terms of avoided healthcare and societal costs of disease. Population-representative data from the Monitor of Engagement with the Natural Environment (MENE) survey (n = 47,580; representing 44,386,756) were used to estimate the weekly volume of nature-based recreational PA by adults in England in 2019. We used epidemiological dose-response data to calculate incident cases of six NCDs (ischaemic heart disease (IHD), ischaemic stroke (IS), type 2 diabetes (T2D), colon cancer (CC), breast cancer (BC) and major depressive disorder (MDD)) prevented through nature-based PA, and estimated associated savings using published costs of healthcare, informal care and productivity losses. We investigated additional savings resulting from hypothetical increases in: (a) visitor PA and (b) visitor numbers. In 2019, 22million adults > 16 years of age in England visited natural environments at least weekly. At reported volumes of nature-based PA, we estimated that 550 cases of IHD, 168 cases of IS, 1,410 cases of T2D, 41 cases of CC, 37 cases of BC and 10,552 cases of MDD were prevented, creating annual savings of £108.7million (95 % uncertainty interval: £70.3million; £150.3million). Nature-based recreational PA in England results in reduced burden of disease and considerable annual savings through prevention of priority NCDs. Strategies that increase nature-based PA could lead to further reductions in the societal burden of NCDs.


Assuntos
Exercício Físico , Recreação , Humanos , Inglaterra/epidemiologia , Estudos Transversais , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Idoso , Doenças não Transmissíveis/epidemiologia , Doenças não Transmissíveis/prevenção & controle , Adulto Jovem , Adolescente , Natureza
7.
PLoS Comput Biol ; 20(1): e1011714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236828

RESUMO

Disentangling the impact of the weather on transmission of infectious diseases is crucial for health protection, preparedness and prevention. Because weather factors are co-incidental and partly correlated, we have used geography to separate out the impact of individual weather parameters on other seasonal variables using campylobacteriosis as a case study. Campylobacter infections are found worldwide and are the most common bacterial food-borne disease in developed countries, where they exhibit consistent but country specific seasonality. We developed a novel conditional incidence method, based on classical stratification, exploiting the long term, high-resolution, linkage of approximately one-million campylobacteriosis cases over 20 years in England and Wales with local meteorological datasets from diagnostic laboratory locations. The predicted incidence of campylobacteriosis increased by 1 case per million people for every 5° (Celsius) increase in temperature within the range of 8°-15°. Limited association was observed outside that range. There were strong associations with day-length. Cases tended to increase with relative humidity in the region of 75-80%, while the associations with rainfall and wind-speed were weaker. The approach is able to examine multiple factors and model how complex trends arise, e.g. the consistent steep increase in campylobacteriosis in England and Wales in May-June and its spatial variability. This transparent and straightforward approach leads to accurate predictions without relying on regression models and/or postulating specific parameterisations. A key output of the analysis is a thoroughly phenomenological description of the incidence of the disease conditional on specific local weather factors. The study can be crucially important to infer the elusive mechanism of transmission of campylobacteriosis; for instance, by simulating the conditional incidence for a postulated mechanism and compare it with the phenomenological patterns as benchmark. The findings challenge the assumption, commonly made in statistical models, that the transformed mean rate of infection for diseases like campylobacteriosis is a mere additive and combination of the environmental variables.


Assuntos
Infecções por Campylobacter , Campylobacter , Doenças Transmissíveis , Gastroenterite , Humanos , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , País de Gales/epidemiologia , Tempo (Meteorologia) , Estações do Ano , Inglaterra/epidemiologia , Incidência , Doenças Transmissíveis/epidemiologia
8.
Environ Int ; 178: 108046, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393725

RESUMO

Exposure to ambient ozone (O3) O3 is associated with impacts on human health. O3 is a secondary pollutant whose concentrations are determined inter alia by emissions of precursors such as oxides of nitrogen (NOx) and volatile organic compounds (VOCs), and thus future health burdens depend on policies relating to climate and air quality. While emission controls are expected to reduce levels of PM2.5 and NO2 and their associated mortality burdens, for secondary pollutants like O3 the picture is less clear. Detailed assessments are necessary to provide quantitative estimates of future impacts to support decision-makers. We simulate future O3 across the UK using a high spatial resolution atmospheric chemistry model with current UK and European policy projections for 2030, 2040 and 2050, and use UK regional population-weighting and latest recommendations on health impact assessment to quantify respiratory emergency hospital admissions associated with short-term effects of O3. We estimate 60,488 admissions in 2018, increasing by 4.2%, 4.5% and 4.6% by 2030, 2040 and 2050 respectively (assuming a fixed population). Including future population growth, estimated emergency respiratory hospital admissions are 8.3%, 10.3% and 11.7% higher by 2030, 2040 and 2050 respectively. Increasing O3 concentrations in future are driven by reduced nitric oxide (NO) in urban areas due to reduced emissions, with increases in O3 mainly occurring in areas with lowest O3 concentrations currently. Meteorology influences episodes of O3 on a day-to-day basis, although a sensitivity study indicates that annual totals of hospital admissions are only slightly impacted by meteorological year. While reducing emissions results in overall benefits to population health (through reduced mortality due to long-term exposure to PM2.5 and NO2), due to the complex chemistry, as NO emissions reduce there are associated local increases in O3 close to population centres that may increase harms to health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Dióxido de Nitrogênio , Poluição do Ar/análise , Ozônio/análise , Óxido Nítrico , Reino Unido , Hospitais , Monitoramento Ambiental/métodos
9.
Environ Int ; 174: 107862, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963156

RESUMO

Air pollution is the greatest environmental risk to public health. Future air pollution concentrations are primarily determined by precursor emissions, which are driven by environmental policies relating to climate and air pollution. Detailed health impact assessments (HIA) are necessary to provide quantitative estimates of the impacts of future air pollution to support decision-makers developing environmental policy and targets. In this study we use high spatial resolution atmospheric chemistry modelling to simulate future air pollution concentrations across the UK for 2030, 2040 and 2050 based on current UK and European policy projections. We combine UK regional population-weighted concentrations with the latest epidemiological relationships to quantify mortality associated with changes in PM2.5 and NO2 air pollution. Our HIA suggests that by 2050, population-weighted exposure to PM2.5 will reduce by 28% to 36%, and for NO2 by 35% to 49%, depending on region. The HIA shows that for present day (2018), annual mortality attributable to the effects of long-term exposure to PM2.5 and NO2 is in the range 26,287 - 42,442, and that mortality burdens in future will be substantially reduced, being lower by 31%, 35%, and 37% in 2030, 2040 and 2050 respectively (relative to 2018) assuming no population changes. Including population projections (increases in all regions for 30+ years age group) slightly offsets these health benefits, resulting in reductions of 25%, 27%, and 26% in mortality burdens for 2030, 2040, 2050 respectively. Significant reductions in future mortality burdens are estimated and, importantly for public health, the majority of benefits are achieved early on in the future timeline simulated, though further efforts are likely needed to reduce impacts of air pollution to health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Políticas , Material Particulado/efeitos adversos , Material Particulado/análise , Reino Unido/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
10.
Environ Int ; 173: 107836, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822002

RESUMO

Anthropogenic climate change will have a detrimental impact on global health, including the direct impact of higher ambient temperatures. Existing projections of heat-related health outcomes in a changing climate often consider increasing ambient temperatures alone. Population growth and structure has been identified as a key source of uncertainty in future projections. Age acts as a modifier of heat risk, with heat-risk generally increasing in older age-groups. In many countries the population is ageing as lower birth rates and increasing life expectancy alter the population structure. Preparing for an older population, in particular in the context of a warmer climate should therefore be a priority in public health research and policy. We assess the level of inclusion of population growth and demographic changes in research projecting exposure to heat and heat-related health outcomes. To assess the level of inclusion of population changes in the literature, keyword searches of two databases were implemented, followed by reference and citation scans to identify any missed papers. Relevant papers, those including a projection of the heat health burden under climate change, were then checked for inclusion of population scenarios. Where sensitivity to population change was studied the impact of this on projections was extracted. Our analysis suggests that projecting the heat health burden is a growing area of research, however, some areas remain understudied including Africa and the Middle East and morbidity is rarely explored with most studies focusing on mortality. Of the studies pairing projections of population and climate, specifically SSPs and RCPs, many used pairing considered to be unfeasible. We find that not including any projected changes in population or demographics leads to underestimation of health burdens of on average 64 %. Inclusion of population changes increased the heat health burden across all but two studies.


Assuntos
Mudança Climática , Temperatura Alta , Expectativa de Vida , Incerteza , Crescimento Demográfico , Mortalidade
11.
NPJ Clim Atmos Sci ; 6(1)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38204467

RESUMO

Irrigation and urban greening can mitigate extreme temperatures and reduce adverse health impacts from heat. However, some recent studies suggest these interventions could actually exacerbate heat stress by increasing humidity. These studies use different heat stress indices (HSIs), hindering intercomparisons of the relative roles of temperature and humidity. Our method uses calculus of variations to compare the sensitivity of HSIs to temperature and humidity, independent of HSI units. We explain the properties of different HSIs and identify conditions under which they disagree. We highlight recent studies where the use of different HSIs could have led to opposite conclusions. Our findings have significant implications for the evaluation of irrigation and urban greening as adaptive responses to overheating and climate adaptation measures in general. We urge researchers to be critical in their choice of HSIs, especially in relation to health outcomes; our method provides a useful tool for making informed comparisons.

12.
J Appl Meteorol Climatol ; 62(11): 1539-1572, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38872788

RESUMO

Urban climate model evaluation often remains limited by a lack of trusted urban weather observations. The increasing density of personal weather sensors (PWSs) make them a potential rich source of data for urban climate studies that address the lack of representative urban weather observations. In our study, we demonstrate that carefully quality-checked PWS data not only improve urban climate models' evaluation but can also serve for bias correcting their output prior to any urban climate impact studies. After simulating near-surface air temperatures over London and south-east England during the hot summer of 2018 with the Weather Research and Forecasting (WRF) Model and its building Effect parameterization with the building energy model (BEP-BEM) activated, we evaluated the modeled temperatures against 402 urban PWSs and showcased a heterogeneous spatial distribution of the model's cool bias that was not captured using official weather stations only. This finding indicated a need for spatially explicit urban bias corrections of air temperatures, which we performed using an innovative method using machine learning to predict the models' biases in each urban grid cell. This bias-correction technique is the first to consider that modeled urban temperatures follow a nonlinear spatially heterogeneous bias that is decorrelated from urban fraction. Our results showed that the bias correction was beneficial to bias correct daily minimum, daily mean, and daily maximum temperatures in the cities. We recommend that urban climate modelers further investigate the use of quality-checked PWSs for model evaluation and derive a framework for bias correction of urban climate simulations that can serve urban climate impact studies.

13.
Energy Build ; 249: None, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34819713

RESUMO

Climate change means the UK will experience warmer winters and hotter summers in the future. Concurrent energy efficiency improvements to housing may modify indoor exposures to heat or cold, while population aging may increase susceptibility to temperature-related mortality. We estimate heat and cold mortality and energy consumption in London for typical (non-extreme) future climates, given projected changes in population and housing. Building physics models are used to simulate summertime and wintertime indoor temperatures and space heating energy consumption of London dwellings for 'baseline' (2005-2014) and future (2030s, 2050s) periods using data from the English Housing Survey, historical weather data, and projected future weather data with temperatures representative of 'typical' years. Linking to population projections, we calculate future heat and cold attributable mortality and energy consumption with demolition, construction, and alternative scenarios of energy efficiency retrofit. At current retrofit rates, around 168-174 annual cold-related deaths per million population would typically be avoided by the 2050s, or 261-269 deaths per million under ambitious retrofit rates. Annual heat deaths would typically increase by 1 per million per year under the current retrofit rate, and 12-13 per million under ambitious rates without population adaptation to heat. During typical future summers, an estimated 38-73% of heat-related deaths can be avoided using external shutters on windows, with their effectiveness lower during hotter weather. Despite warmer winters, ambitious retrofit rates are necessary to reduce typical annual energy consumption for heating below baseline levels, assuming no improvement in heating system efficiencies. Concerns over future overheating in energy efficient housing are valid but increases in heat attributable mortality during typical and hot (but not extreme) summers are more than offset by significant reductions in cold mortality and easily mitigated using passive measures. More ambitious retrofit rates are critical to reduce energy consumption and offer co-benefits for reducing cold-related mortality.

14.
Build Cities ; 2: 812-836, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34704037

RESUMO

The ambition to develop sustainable and healthy cities requires city-specific policy and practice founded on a multidisciplinary evidence base, including projections of human-induced climate change. A cascade of climate models of increasing complexity and resolution is reviewed, which provides the basis for constructing climate projections-from global climate models with a typical horizontal resolution of a few hundred kilometres, through regional climate models at 12-50 km to convection-permitting models at 1 km resolution that permit the representation of urban induced climates. Different approaches to modelling the urban heat island (UHI) are also reviewed-focusing on how climate model outputs can be adjusted and coupled with urban canopy models to better represent UHI intensity, its impacts and variability. The latter can be due to changes induced by urbanisation or to climate change itself. City interventions such as greater use of green infrastructure also have an effect on the UHI and can help to reduce adverse health impacts such as heat stress and the mortality associated with increasing heat. Examples for the Complex Urban Systems for Sustainability and Health (CUSSH) partner cities of London, Rennes, Kisumu, Nairobi, Beijing and Ningbo illustrate how cities could potentially make use of more detailed models and projections to develop and evaluate policies and practices targeted at their specific environmental and health priorities. PRACTICE RELEVANCE: Large-scale climate projections for the coming decades show robust trends in rising air temperatures, including more warm days and nights, and longer/more intense warm spells and heatwaves. This paper describes how more complex and higher resolution regional climate and urban canopy models can be combined with the aim of better understanding and quantifying how these larger scale patterns of change may be modified at the city or finer scale. These modifications may arise due to urbanisation and effects such as the UHI, as well as city interventions such as the greater use of grey and green infrastructures.There is potential danger in generalising from one city to another-under certain conditions some cities may experience an urban cool island, or little future intensification of the UHI, for example. City-specific, tailored climate projections combined with tailored health impact models contribute to an evidence base that supports built environment professionals, urban planners and policymakers to ensure designs for buildings and urban areas are fit for future climates.

15.
Build Cities ; 2(1): 759-778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34704039

RESUMO

In 2020, Covid-19-related mobility restrictions resulted in the most extensive human-made air-quality changes ever recorded. The changes in mobility are quantified in terms of outdoor air pollution (concentrations of PM2.5 and NO2) and the associated health impacts in four UK cities (Greater London, Cardiff, Edinburgh and Belfast). After applying a weather-corrected machine learning (ML) technique, all four cities show NO2 and PM2.5 concentration anomalies in 2020 when compared with the ML-predicted values for that year. The NO2 anomalies are -21% for Greater London, -19% for Cardiff, -27% for Belfast and -41% for Edinburgh. The PM2.5 anomalies are 7% for Greater London, -1% for Cardiff, -15% for Edinburgh, -14% for Belfast. All the negative anomalies, which indicate air pollution at a lower level than expected from the weather conditions, are attributable to the mobility restrictions imposed by the Covid-19 lockdowns. Spearman rank-order correlations show a significant correlation between the lowering of NO2 levels and reduction in public transport (p < 0.05) and driving (p < 0.05), which is associated with a decline in NO2-attributable mortality. These positive effects of the mobility restrictions on public health can be used to evaluate policies for improved outdoor air quality. POLICY RELEVANCE: Finding the means to curb air pollution is very important for public health. Empirical evidence at a city scale reveals significant correlations between the reduction in vehicular transport and in ambient NO2 concentrations. The results provide justification for city-level initiatives to reduce vehicular traffic. Well-designed and effective policy interventions (e.g. the promotion of walking and cycling, remote working, local availability of services) can substantially reduce long-term air pollution and have positive health impacts.

17.
Environ Int ; 154: 106606, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971480

RESUMO

Human health can be negatively impacted by hot or cold weather, which often exacerbates respiratory or cardiovascular conditions and increases the risk of mortality. Urban populations are at particular increased risk of effects from heat due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI, its impacts on health, and also the consideration of interventions such as reflective 'cool' roofs to help reduce summertime overheating effects. However, interventions aimed at limiting summer heat are rarely evaluated for their effects in wintertime, and thus their overall annual net impact on temperature-related health effects are poorly understood. In this study we use a regional weather model to simulate the winter 2009/10 period for an urbanized region of the UK (Birmingham and the West Midlands), and use a health impact assessment to estimate the impact of reflective 'cool' roofs (an intervention usually aimed at reducing the UHI in summer) on cold-related mortality in winter. Cool roofs have been shown to be effective at reducing maximum temperatures during summertime. In contrast to the summer, we find that cool roofs have a minimal effect on ambient air temperatures in winter. Although the UHI in summertime can increase heat-related mortality, the wintertime UHI can have benefits to health, through avoided cold-related mortality. Our results highlight the potential annual net health benefits of implementing cool roofs to reduce temperature-related mortality in summer, without reducing the protective UHI effect in winter. Further, we suggest that benefits of cool roofs may increase in future, with a doubling of the number of heat-related deaths avoided by the 2080s (RCP8.5) compared to summer 2006, and with insignificant changes in the impact of cool-roofs on cold-related mortality. These results further support reflective 'cool' roof implementation strategies as effective interventions to protect health, both today and in future.


Assuntos
Temperatura Baixa , Temperatura Alta , Cidades , Mudança Climática , Humanos , Estações do Ano , Temperatura
18.
Environ Int ; 154: 106530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33895439

RESUMO

Exposure to heat has a range of potential negative impacts on human health; hot weather may exacerbate cardiovascular and respiratory illness or lead to heat stroke and death. Urban populations are at increased risk due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI and its effects, whereas far less research focuses on the wintertime UHI. Exposure to low temperature also leads to a range of illnesses, and in fact, in the UK, annual cold-related mortality outweighs heat-related mortality. It is not clearly understood to what extent the wintertime UHI may protect against cold related mortality. In this study we quantify the UHI intensity in wintertime for a heavily urbanized UK region (West Midlands, including Birmingham) using a regional weather model, and for the first time, use a health impact assessment (HIA) to estimate the associated impact on cold-related mortality. We show that the population-weighted mean winter UHI intensity was +2.3 °C in Birmingham city center, and comparable with that of summer. Our results suggest a potential protective effect of the wintertime UHI, equivalent to 266 cold-related deaths avoided (~15% of total cold-related mortality over ~11 weeks). When including the impacts of climate change, our results suggest that the number of heat-related deaths associated with the summer UHI will increase from 96 (in 2006) to 221 in the 2080s, based on the RCP8.5 emissions pathway. The protective effect of the wintertime UHI is projected to increase only slightly from 266 cold-related deaths avoided in 2009 to 280 avoided in the 2080s. The different effects of the UHI in winter and summer should be considered when assessing interventions in the built environment for reducing summer urban heat, and our results suggest that the future burden of temperature-related mortality associated with the UHI is likely to increase in summer relative to winter.


Assuntos
Temperatura Baixa , Temperatura Alta , Cidades , Mudança Climática , Humanos , Estações do Ano
19.
Sci Total Environ ; 773: 145635, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582353

RESUMO

Three Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) are used to simulate future ozone (O3), nitrogen dioxide (NO2), and fine particulate matter (PM2.5) in the United Kingdom (UK) for the 2050s relative to the 2000s with an air quality model (AQUM) at a 12 km horizontal resolution. The present-day and future attributable fractions (AF) of mortality associated with long-term exposure to annual mean O3, NO2 and PM2.5 have accordingly been estimated for the first time for regions across England, Scotland and Wales. Across the three RCPs (RCP2.6, RCP6.0 and RCP8.5), simulated annual mean of the daily maximum 8-h mean (MDA8) O3 concentrations increase compared to present-day, likely due to decreases in NOx (nitrogen oxides) emissions, leading to less titration of O3 by NO. Annual mean NO2 and PM2.5 concentrations decrease under all RCPs for the 2050s, mostly driven by decreases in NOx and sulphur dioxide (SO2) emissions, respectively. The AF of mortality associated with long-term exposure to annual mean MDA8 O3 is estimated to increase in the future across all the regions and for all RCPs. Reductions in NO2 and PM2.5 concentrations lead to reductions in the AF estimated for future periods under all RCPs, for both pollutants. Total mortality burdens are also highly sensitive to future population projections. Accounting for population projections exacerbates differences in total UK-wide MDA8 O3-health burdens between present-day and future by up to a factor of ~3 but diminishes differences in NO2-health burdens. For PM2.5, accounting for future population projections results in additional UK-wide deaths brought forward compared to present-day under RCP2.6 and RCP6.0, even though the simulated PM2.5 concentrations for the 2050s are estimated to decrease. Thus, these results highlight the sensitivity of future health burdens in the UK to future trends in atmospheric emissions over the UK as well as future population projections.

20.
Sci Total Environ ; 774: 145549, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33611010

RESUMO

Ash, gases and particles emitted from volcanic eruptions cause disruption to air transport, but also have negative impacts on respiratory and cardiovascular health. Exposure to sulphur dioxide (SO2) and sulphate (SO4) aerosols increases the risk of mortality, and respiratory and cardiovascular hospital admissions. Ash and gases can be transported over large distances and are a potential public health risk. In 2014-15, the Bárðarbunga fissure eruption at Holuhraun, Iceland was associated with high emissions of SO2 and SO4, detected at UK monitoring stations. We estimated the potential impacts on the UK population from SO2 and SO4 associated with a hypothetical large fissure eruption in Iceland for mortality and emergency hospital admissions. To simulate the effects of different weather conditions, we used an ensemble of 80 runs from an atmospheric dispersion model to simulate SO2 and SO4 concentrations on a background of varying meteorology. We weighted the simulated exposure data by population, and quantified the potential health impacts that may result in the UK over a 6-week period following the start of an eruption. We found in the majority of cases, the expected number of deaths resulting from SO2 over a 6-week period total fewer than ~100 for each model run, and for SO4, in the majority of cases, the number totals fewer than ~200. However, the 6-week simulated period with the highest SO2 was associated with 313 deaths, and the period with the highest SO4 was associated with 826 deaths. The single 6-week period relating to the highest combined SO2 and SO4 was associated with 925 deaths. Over a 5-month extended exposure period, upper estimates are for 3350 deaths, 4030 emergency cardiovascular and 6493 emergency respiratory hospitalizations. These figures represent a worst-case scenario and can inform health protection planning for effusive volcanic eruptions which may affect the UK in the future.


Assuntos
Poluentes Atmosféricos , Dióxido de Enxofre , Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Islândia , Sulfatos , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade , Reino Unido , Erupções Vulcânicas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA