Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 26(10): 2660-2673, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214377

RESUMO

Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome-wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred.


Assuntos
Genética Populacional , Imunogenética , Endogamia , Aves Canoras/genética , Aves Canoras/imunologia , Alelos , Animais , Variação Genética , Complexo Principal de Histocompatibilidade/genética , Repetições de Microssatélites , Nova Zelândia , Receptores Toll-Like/genética
2.
PLoS One ; 7(8): e43113, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912802

RESUMO

We produced replicated experimental lines of inbred fruit flies Drosophila melanogaster to test the effects of crossing different bottlenecked populations as a method of 'genetic rescue' for endangered species lacking outbred donor populations. Two strains differing in the origin of the founders were maintained as isolated populations in a laboratory environment. After two generations of controlled full-sib matings, the resulting inbred fruit flies had significantly reduced breeding success and survival rates. However, crosses between the two bottlenecked strains reversed the effects of inbreeding and led to increases in breeding success and survival that persisted into the second generation of hybrid offspring. In contrast, crosses within each strain (but between different replicate lines) resulted in only slight improvements in some fitness components, and this positive trend was reversed in the second generation. This experiment highlights the potential value of translocations between different inbred populations of endangered species as a tool to mitigate the negative effects of inbreeding, but this benefit may depend upon the origin of the populations. Our results also confirm the importance of maintaining adequate levels of genetic variation within populations and that severely bottlenecked populations should not be discounted as possible donors in genetic rescue programs for endangered species.


Assuntos
Cruzamento/métodos , Drosophila melanogaster/genética , Espécies em Perigo de Extinção , Efeito Fundador , Variação Genética , Animais , Cruzamentos Genéticos , Feminino , Aptidão Genética/genética , Endogamia/métodos , Masculino
3.
Arch Virol ; 157(9): 1651-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22638639

RESUMO

Beak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the virus poses different conservation-management challenges, and thus, a clear understanding of the molecular phylogeny of BDFV is a crucial step towards integrated management planning. This study represents the first comprehensive attempt to screen New Zealand's endangered and threatened psittacines systematically for BFDV. We sampled and screened kakapos (Strigops habroptilus), kakas (Nestor meridionalis), keas (N. notabilis), Chatham parakeets (Cyanoramphus forbesi), Malherbe's parakeets (Cyanoramphus malherbi), yellow-crowned parakeets (C. auriceps) and red-fronted parakeets (Cyanoramphus novaezelandiae), as well as eastern rosellas (Platycercus eximius), an introduced species that is now common throughout the North Island, for BFDV. Out of all species and populations sampled (786 individuals), we found 16 BFDV-positive red-fronted parakeets from Little Barrier Island/Hauturu, seven eastern rosellas from the Auckland region, and eight yellow-crowned parakeets from the Eglinton Valley in the South Island. The full genomes of the viral isolates from the red-fronted parakeets share 95-97 % sequence identity to those from the invasive eastern rosellas and 92.7-93.4 % to those isolates from the South Island yellow-crowned parakeets. The yellow-crowned parakeet BFDV isolates share 92-94 % sequence identity with those from eastern rosellas. The low level of diversity among all BFDV isolates from red-fronted parakeets could suggest a more recent infection among these birds compared to the yellow-crowned parakeets, whereas the diversity in the eastern rosellas indicates a much more established infection. Pro-active screening and monitoring of BFDV infection rates in aviaries as well as in wild populations are necessary to limit the risk of transmission among threatened and endangered parrot populations in New Zealand.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Infecções por Circoviridae/veterinária , Circovirus/classificação , Circovirus/genética , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Circovirus/isolamento & purificação , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Variação Genética , Genoma Viral , Dados de Sequência Molecular , Nova Zelândia/epidemiologia , Papagaios , Filogenia , Análise de Sequência de DNA
4.
Conserv Biol ; 24(6): 1674-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20646015

RESUMO

Severe population bottlenecks are expected to lead to increases in inbreeding depression and to reduce the long-term viability of populations. We compared hatching failure across 51 threatened bird species to test the relation between the size of population bottleneck and population viability. Bottleneck size was defined as the lowest population size recorded in a species. Hatching failure was estimated as the proportion of eggs that failed to hatch due to infertility and embryonic death, both of which increase with inbreeding. The size of the bottleneck varied from 4 to 20,000 individuals across species and had a significant negative effect on hatching failure, a pattern that was consistent when we controlled for the confounding effects of phylogeny, body size, clutch size, time since the bottleneck occurred, and latitude. Hatching failure varied from 3 to 64% across species and was more than 10% in all populations passing through bottlenecks below 100­150 individuals. Our results show that the negative consequences of bottlenecks on hatching success are widespread in the populations of species we examined, and emphasize the conservation benefit of preventing bottlenecks below 150 individuals.


Assuntos
Aves/fisiologia , Endogamia , Animais , Aves/embriologia , Conservação dos Recursos Naturais , Desenvolvimento Embrionário/genética , Espécies em Perigo de Extinção , Modelos Lineares , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...