Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cartilage ; 13(1): 19476035221074011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35098739

RESUMO

PURPOSE: To investigate the effect of bone-marrow stimulation (BMS) on subchondral bone plate morphology and remodeling compared to untreated subchondral bone in a validated minipig model. METHODS: Three Göttingen minipigs received BMS with drilling as treatment for two chondral defects in each knee. The animals were euthanized after six months. Follow-up consisted of a histological semiquantitative evaluation using a novel subchondral bone scoring system and micro computed tomography (µCT) of the BMS subchondral bone. The histological and microstructural properties of the BMS-treated subchondral bone were compared to that of the adjacent healthy subchondral bone. RESULTS: The µCT analysis showed that subchondral bone treated with BMS had significantly higher connectivity density compared to adjacent untreated subchondral bone (26 1/mm3 vs. 21 1/mm3, P = 0.048). This was the only microstructural parameter showing a significant difference. The histological semiquantitative score differed significantly between the subchondral bone treated with BMS and the adjacent untreated subchondral (8.0 vs. 10 P = < 0.001). Surface irregularities were seen in 43% and bone overgrowth in 27% of the histological sections. Only sparse formation of bone cysts was detected (1%). CONCLUSIONS: BMS with drilling does not cause extensive changes to the subchondral bone microarchitecture. Furthermore, the morphology of BMS subchondral bone resembled that of untreated subchondral bone with almost no formation of bone cyst, but some surface irregularities and bone overgrowth.


Assuntos
Medula Óssea , Cartilagem Articular , Animais , Placas Ósseas , Cartilagem Articular/fisiologia , Cartilagem Articular/cirurgia , Suínos , Porco Miniatura , Microtomografia por Raio-X
2.
Cartilage ; 13(2_suppl): 277S-284S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31327251

RESUMO

BACKGROUND: Repair of chondral injuries using cartilage chips has recently demonstrated clinical feasibility. Autologous platelet-rich plasma (PRP) is a potential promising technique for improving healing response during cartilage repair. PURPOSE: To assess the cartilage repair tissue quality after autologous cartilage chips treatment (CC) with and without repeated local injections of PRP for the treatment of full-thickness focal chondral defects of the knee. MATERIALS AND METHODS: Two full-thickness chondral defects (Ø = 6 mm) were created in the medial and lateral trochlea facets of each knee in 6 skeletally mature Göttingen minipigs. The 2 treatment groups were (1) CC with 1 weekly PRP injection for 3 weeks (n = 12) and (2) CC alone (n = 12). The animals were euthanized after 6 months. Samples of whole blood and PRP were analyzed for concentrations of platelets and nucleated cells. The composition of the cartilage repair tissue was assessed using gross appearance assessment, histomorphometry, and semiquantitative scoring (ICRS II). RESULTS: Histological evaluation demonstrated no significant difference in the content of hyaline cartilage (CC + PRP: 18.7% vs. CC: 19.6%), fibrocartilage (CC + PRP: 48.1% vs. CC: 51.8%), or fibrous tissue (CC + PRP: 22.7% vs. CC: 21.8%) between the treatment groups. Macroscopic evaluation did not demonstrate any difference between groups. CONCLUSIONS: PRP injections after CC in the treatment of full-thickness cartilage injuries demonstrated no beneficial effects in terms of macroscopic and histologic composition of cartilage repair tissue.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Plasma Rico em Plaquetas , Animais , Doenças das Cartilagens/terapia , Cartilagem Articular/lesões , Suínos , Porco Miniatura , Transplante Autólogo
3.
Arch Orthop Trauma Surg ; 140(1): 77-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31664573

RESUMO

BACKGROUND: Bone marrow stimulation (BMS) remains a dominant treatment strategy for symptomatic full thickness articular cartilage defects. Autologous platelet-rich plasma (PRP), may improve biological cartilage repair as an adjunct to BMS. OBJECTIVES: To assess the histological quality of cartilage repair after BMS with and without repeated local injections of PRP for the treatment of full-thickness focal chondral defects of the knee. METHODS: Two full-thickness chondral defects (Ø = 6 mm) were surgically performed in the medial and lateral trochlea of each knee in skeletally mature Göttingen minipigs. The two treatment groups with 12 defect for each groups were (1) BMS with one weekly PRP injection for 4 weeks, and (2) BMS alone. The animals were euthanized after 6 months. Samples of both whole blood and PRP were analysed with an automated hematology analyzer to determine the concentrations of platelets and nucleated cells. The composition of cartilage repair tissue was assessed using gross appearance assessment, histomorphometry and semi-quantitative scoring (ICRS II). RESULTS: The average fold increase in platelets was 10.2 ± 2.2. Leukocyte concentration increased in PRP samples by an average fold change of 7.2 ± 1.3. Our macroscopic findings showed that the defects in the BMS + PRP-treated group, were filled with an irregular, partially rough tissue similar to the BMS-treated group. No significant difference in amount of hyalin cartilage, fibrocartilage or fibrous tissue content and ICRS II scores was found between the groups. CONCLUSIONS: Four repeated local injections of leukocyte-rich PRP after BMS in the treatment of full-thickness cartilage injuries demonstrated no beneficial effects in terms of macroscopic and histological cartilage repair tissue quality.


Assuntos
Artroscopia/métodos , Células da Medula Óssea , Doenças das Cartilagens/terapia , Plasma Rico em Plaquetas , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Modelos Animais de Doenças , Suínos , Porco Miniatura
4.
Am J Sports Med ; 44(6): 1597-604, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26951074

RESUMO

BACKGROUND: Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. PURPOSE/HYPOTHESIS: This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. RESULTS: There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups; however, no difference in volume was found between the groups at either 6 or 12 months. CONCLUSION: The presence of cartilage chips in an osteochondral defect facilitated the formation of fibrocartilage as opposed to fibrous tissue at both 6 and 12 months posttreatment. The implanted chips were present in the defect and viable after 12 months. CLINICAL RELEVANCE: This study substantiates the chondrogenic role of cartilage chips in osteochondral defects.


Assuntos
Transplante Ósseo , Cartilagem Articular/cirurgia , Transplante Autólogo , Animais , Masculino , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...