Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 322(5901): 597-602, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18948542

RESUMO

Recent findings suggest important roles for nuclear organization in gene expression. In contrast, little is known about how nuclear organization contributes to genome stability. Epistasis analysis (E-MAP) using DNA repair factors in yeast indicated a functional relationship between a nuclear pore subcomplex and Slx5/Slx8, a small ubiquitin-like modifier (SUMO)-dependent ubiquitin ligase, which we show physically interact. Real-time imaging and chromatin immunoprecipitation confirmed stable recruitment of damaged DNA to nuclear pores. Relocation required the Nup84 complex and Mec1/Tel1 kinases. Spontaneous gene conversion can be enhanced in a Slx8- and Nup84-dependent manner by tethering donor sites at the nuclear periphery. This suggests that strand breaks are shunted to nuclear pores for a repair pathway controlled by a conserved SUMO-dependent E3 ligase.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Imunoprecipitação da Cromatina , Reparo do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Conversão Gênica , Genes Fúngicos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Dedos de Zinco
2.
J Cell Sci ; 120(Pt 23): 4209-20, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18003698

RESUMO

Double-strand breaks (DSB) in yeast lead to the formation of repair foci and induce a checkpoint response that requires both the ATR-related kinase Mec1 and its target, Rad53. By combining high-resolution confocal microscopy and chromatin-immunoprecipitation assays, we analysed the genetic requirements for and the kinetics of Mec1 recruitment to an irreparable HO-endonuclease-induced DSB. Coincident with the formation of a 3' overhang, the Mec1-Ddc2 (Lcd1) complex is recruited into a single focus that colocalises with the DSB site and precipitates with single-strand DNA (ssDNA). The absence of Rad24 impaired cut-site resection, Mec1 recruitment and focus formation, whereas, in the absence of yKu70, both ssDNA accumulation and Mec1 recruitment was accelerated. By contrast, mutation of the N-terminus of the large RPA subunit blocked Mec1 focus formation without affecting DSB processing, arguing for a direct involvement of RPA in Mec1-Ddc2 recruitment. Conversely, loss of Rad51 enhanced Mec1 focus formation independently of ssDNA formation, suggesting that Rad51 might compete for the interaction of RPA with Mec1-Ddc2. In all cases, Mec1 focus formation correlated with checkpoint activation. These observations led to a model that links end-processing and competition between different ssDNA-binding factors with Mec1-Ddc2 focus formation and checkpoint activation.


Assuntos
Reparo do DNA , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Dano ao DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Modelos Biológicos , Fosfoproteínas/metabolismo , Ligação Proteica , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 441(7094): 774-8, 2006 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-16760983

RESUMO

The organization of the nucleus into subcompartments creates microenvironments that are thought to facilitate distinct nuclear functions. In budding yeast, regions of silent chromatin, such as those at telomeres and mating-type loci, cluster at the nuclear envelope creating zones that favour gene repression. Other reports indicate that gene transcription occurs at the nuclear periphery, apparently owing to association of the gene with nuclear pore complexes. Here we report that transcriptional activation of a subtelomeric gene, HXK1 (hexokinase isoenzyme 1), by growth on a non-glucose carbon source led to its relocalization to nuclear pores. This relocation required the 3' untranslated region (UTR), which is essential for efficient messenger RNA processing and export, consistent with an accompanying report. However, activation of HXK1 by an alternative pathway based on the transactivator VP16 moved the locus away from the nuclear periphery and abrogated the normal induction of HXK1 by galactose. Notably, when we interfered with HXK1 localization by either antagonizing or promoting association with the pore, transcript levels were reduced or enhanced, respectively. From this we conclude that nuclear position has an active role in determining optimal gene expression levels.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/genética , Galactose/metabolismo , Galactose/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hexoquinase/genética , Isoenzimas/genética , Poro Nuclear/genética , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
4.
Curr Opin Genet Dev ; 16(2): 143-50, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16503133

RESUMO

The name heterochromatin protein 1 (HP1) suggests that this small nuclear factor plays a role in forming heterochromatic domains. It was noticed years ago, however, that the distribution of HP1 on polytene chromosomes was not restricted to chromocenters or telomeres. HP1 was also found, reproducibly, along the euchromatic arms. A possible function in euchromatic gene regulation was postulated. Now, a large body of data has blurred the definition of HP1 as a structural component of heterochromatin, revealing its two-faced nature. Not only do HP1 isoforms have specific binding sites in both heterochromatic and euchromatic domains but they might also participate in the repression and activation of transcription in both compartments.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Animais , Sítios de Ligação , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Eucromatina/química , Eucromatina/genética , Eucromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Transcrição Gênica
5.
EMBO J ; 25(4): 857-67, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16467853

RESUMO

Yeast telomeres are anchored at the nuclear envelope (NE) through redundant pathways that require the telomere-binding factors yKu and Sir4. Significant variation is observed in the efficiency with which different telomeres are anchored, however, suggesting that other forces influence this interaction. Here, we show that subtelomeric elements and the insulator factors that bind them antagonize the association of telomeres with the NE. This is detectable when the redundancy in anchoring pathways is compromised. Remarkably, these same conditions lead to a reduction in steady-state telomere length in the absence of the ATM-kinase homologue Tel1. Both the delocalization of telomeres and reduction in telomere length can be induced by targeting of Tbf1 or Reb1, or the viral transactivator VP16, to a site 23 kb away from the TG repeat. This correlation suggests that telomere anchoring and a Tel1-independent pathway of telomere length regulation are linked, lending a functional significance to the association of yeast telomeres with the NE.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Repetições de Dinucleotídeos/fisiologia , Proteínas Fúngicas/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Membrana Nuclear/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética
6.
IEEE Trans Image Process ; 14(9): 1372-83, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16190472

RESUMO

We present a new, robust, computational procedure for tracking fluorescent markers in time-lapse microscopy. The algorithm is optimized for finding the time-trajectory of single particles in very noisy dynamic (two- or three-dimensional) image sequences. It proceeds in three steps. First, the images are aligned to compensate for the movement of the biological structure under investigation. Second, the particle's signature is enhanced by applying a Mexican hat filter, which we show to be the optimal detector of a Gaussian-like spot in 1/omega2 noise. Finally, the optimal trajectory of the particle is extracted by applying a dynamic programming optimization procedure. We have used this software, which is implemented as a Java plug-in for the public-domain ImageJ software, to track the movement of chromosomal loci within nuclei of budding yeast cells. Besides reducing trajectory analysis time by several 100-fold, we achieve high reproducibility and accuracy of tracking. The application of the method to yeast chromatin dynamics reveals different classes of constraints on mobility of telomeres, reflecting differences in nuclear envelope association. The generic nature of the software allows application to a variety of similar biological imaging tasks that require the extraction and quantitation of a moving particle's trajectory.


Assuntos
Algoritmos , Inteligência Artificial , Cromossomos/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Aumento da Imagem/métodos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Novartis Found Symp ; 264: 140-56; discussion 156-65, 227-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15773752

RESUMO

The positioning of chromosomal domains within interphase nuclei is thought to contribute to establishment and maintenance of epigenetic control. Using GFP-tagged chromosomal domains, LexA-fusion targeting and live microscopy, we investigated mechanisms through which chromatin can be anchored to the nuclear envelope (NE). We find that a subdomain of the silencing information regulator Sir4 (Sir4(PAD)) and yKu80 are sufficient to tether a chromatin region to the nuclear periphery, independently of their silencing function. Sir4(PAD) interacts with Esc1 (Establishes Silent Chromatin 1), a large acidic protein, localized at the nuclear periphery in the absence of Sir4 and yKu. Sir4 also binds to the periphery through yKu80, whose perinuclear ligand is unidentified. Both pathways are involved in the localization of natural telomeres. To show that silent chromatin can also mediate anchorage, we uncoupled the HMR silent mating-type locus from the chromosome using inducible site-specific recombination. Real-time cytological techniques reveal the position and dynamics of the excised locus. We show that the silent HMR ring associates with the NE in a SIR-dependent manner, while derepressed excised rings move without detectable constraint throughout the nucleoplasm. Dual anchoring pathways thus cooperate to generate high concentrations of SIR proteins in perinuclear foci, which in turn promote repression.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/fisiologia , Núcleo Celular/genética , Cromatina/genética , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/genética
8.
Annu Rev Genet ; 38: 305-45, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15568979

RESUMO

Eukaryotic genomes are distributed on linear chromosomes that are grouped together in the nucleus, an organelle separated from the cytoplasm by a characteristic double membrane studded with large proteinaceous pores. The chromatin within chromosomes has an as yet poorly characterized higher-order structure, but in addition to this, chromosomes and specific subchromosomal domains are nonrandomly positioned in nuclei. This review examines functional implications of the long-range organization of the genome in interphase nuclei. A rigorous test of the physiological importance of nuclear architecture is achieved by introducing mutations that compromise both structure and function. Focussing on such genetic approaches, we address general concepts of interphase nuclear order, the role of the nuclear envelope (NE) and lamins, and finally the importance of spatial organization for DNA replication and heritable gene expression.


Assuntos
Núcleo Celular/genética , Animais , Diferenciação Celular , Cromatina , Cromossomos/genética , Replicação do DNA , Expressão Gênica , Humanos , Interfase , Laminas/genética , Laminas/metabolismo , Modelos Biológicos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Telômero/genética , Telômero/metabolismo
9.
EMBO J ; 23(6): 1301-12, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15014445

RESUMO

In budding yeast, the nuclear periphery forms a subcompartment in which telomeres cluster and SIR proteins concentrate. To identify the proteins that mediate chromatin anchorage to the nuclear envelope, candidates were fused to LexA and targeted to an internal GFP-tagged chromosomal locus. Their ability to shift the locus from a random to a peripheral subnuclear position was monitored in living cells. Using fusions that cannot silence, we identify YKu80 and a 312-aa domain of Sir4 (Sir4(PAD)) as minimal anchoring elements, each able to relocalize an internal chromosomal locus to the nuclear periphery. Sir4(PAD)-mediated tethering requires either the Ku complex or Esc1, an acidic protein that is localized to the inner face of the nuclear envelope even in the absence of Ku, Sir4 or Nup133. Finally, we demonstrate that Ku- and Esc1-dependent pathways mediate natural telomere anchoring in vivo. These data provide the first unambiguous identification of protein interactions that are both necessary and sufficient to localize chromatin to the nuclear envelope.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Alelos , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Fase G1 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Microscopia Eletrônica , Proteínas Nucleares/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Telômero/genética , Telômero/metabolismo
11.
Curr Biol ; 12(24): 2076-89, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12498682

RESUMO

BACKGROUND: The positioning of chromosomal domains within interphase nuclei is thought to facilitate transcriptional repression in yeast. Although this is particularly well characterized for telomeres, the molecular basis of their specific subnuclear organization is poorly understood. The use of live fluorescence imaging overcomes limitations of in situ staining on fixed cells and permits the analysis of chromatin dynamics in relation to stages of the cell cycle. RESULTS: We have characterized the dynamics of yeast telomeres and their associated domains of silent chromatin by using rapid time-lapse microscopy. In interphase, native telomeres are highly dynamic but remain within a restricted volume adjacent to the nuclear envelope. This constraint is lost during mitosis. A quantitative analysis of selected mutants shows that the yKu complex is necessary for anchoring some telomeres at the nuclear envelope (NE), whereas the myosin-like proteins Mlp1 and Mlp2 are not. We are able to correlate increased telomeric repression with increased anchoring and show that silent chromatin is tethered to the NE in a Sir-dependent manner in the absence of the yKu complex. Sir-mediated anchoring is S phase specific, while the yKu-mediated pathway functions throughout interphase. Subtelomeric elements of yeast telomere structure influence the relative importance of the yKu- and Sir-dependent mechanisms. CONCLUSIONS: Interphase positioning of telomeres can be achieved through two partially redundant mechanisms. One requires the heterodimeric yKu complex, but not Mlp1 and Mlp2. The second requires Silent information regulators, correlates with transcriptional repression, and is specific to S phase.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/fisiologia , Leveduras/genética , Núcleo Celular/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Interfase/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Mitose/genética , Mutação , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Telômero/ultraestrutura , Leveduras/metabolismo
12.
J Struct Biol ; 140(1-3): 79-91, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490156

RESUMO

The positioning of chromosomal domains in interphase nuclei is thought to facilitate transcriptional repression in yeast. It has been reported that two large coiled-coil proteins of the nuclear envelope, myosin-like proteins 1 and 2, play direct roles in anchoring yeast telomeres to the nuclear periphery, thereby creating a subcompartment enriched for Sir proteins. We have created strains containing complete deletions of mlp1 and mlp2 genes, as well as the double null strain, and find no evidence for the disruption of telomere anchoring at the nuclear periphery in these cells. We also detect no disruption of telomere-associated gene silencing. We confirm, on the other hand, that mlp mutants are particularly sensitive to DNA-damaging agents, such as bleomycin. Moreover, we show that rather than having short telomeres as in yKu-deficient strains, the mlp1 mlp2 strains have extended telomeres, resembling phenotypes of mutations in rif1. Whereas the mlp1 mlp2 mutations act on a pathway of telomere length regulation different from that of yKu70, the effects of the tel1 deletion are epistatic to the mlp mutations, suggesting that the Mlp proteins restrict telomere length in wild-type cells by influencing the Rif-Tel1 pathway of telomerase regulation.


Assuntos
Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Telômero/genética , Bleomicina/farmacologia , Southern Blotting , Núcleo Celular/metabolismo , DNA , Dano ao DNA , Deleção de Genes , Inativação Gênica , Genótipo , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Modelos Genéticos , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/metabolismo , Telômero/metabolismo , Telômero/ultraestrutura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...