Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 194(4): 771-780, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33159540

RESUMO

Osmoderma eremita is a species of beetle that inhabits hollows in ancient trees, which is a habitat that has decreased significantly during the last century. In southeastern Sweden, we studied the metapopulation dynamics of this beetle over a 25 year period, using capture-mark-recapture. The metapopulation size had been rather stable over time, but in most of the individual trees there had been a positive or negative trend in population development. The probability of colonisation was higher in well-connected trees with characteristics reflecting earlier successional stages, and the probability of extinction higher in trees with larger diameter (i.e. in later successional stages), which is expected from a habitat-tracking metapopulation. The annual tree mortality and fall rates (1.1% and 0.4%, respectively) are lower than the colonisation and extinction rates (5-7%), indicating that some of the metapopulation dynamics are due to the habitat dynamics, but many colonisations and extinctions take place for other reasons, such as stochastic events in small populations. The studied metapopulation occurs in an area with a high density of hollow oaks and where the oak pastures are still managed by grazing. In stands with fewer than ten suitable trees, the long-term extinction risk may be considerable, since only a small proportion of all hollow trees harbours large populations, and the population size in trees may change considerably during a decade.


Assuntos
Besouros , Quercus , Animais , Ecossistema , Dinâmica Populacional , Suécia
2.
Ann Geophys ; 36(1): 13-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503514

RESUMO

The question of whether mesospheric OH(υ) rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(υ) rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-υ) vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(υ) rotational population distributions. Rapid OH(high-υ) + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-υ) rotational distributions. The effective rotational temperatures of mesospheric OH(υ) are found to deviate from local thermodynamic equilibrium for all observed vibrational levels.

3.
J Chem Ecol ; 30(2): 353-63, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15112729

RESUMO

Elater ferrugineus is a threatened click beetle inhabiting old hollow trees. Its larvae consume larvae of other saproxylic insects including the threatened scarab beetle Osmoderma eremita. Recently, (R)-(+)-gamma-decalactone was identified as a male-produced sex pheromone of O. eremita. Here we present evidence that E. ferrugineus adults use this odor as a kairomone for location of their prey. In field trapping experiments, significantly more trapping events of E. ferrugineus beetles were observed in Lindgren funnel traps baited with (R)-(+)-gamma-decalactone than in control traps (20 vs. 1, respectively). Analyses of headspace collections from E. ferrugineus beetles indicate that the predator itself does not produce the substance. Both sexes were attracted to the prey pheromone. suggesting that E. ferrugineus males use the odor as an indirect cue for location of mates or of the tree hollows, which make up their habitat. When compared to pitfall traps, the Lindgren system was significantly more effective in trapping E. ferragineus, and no difference could be established for O. eremita, showing the high potential to use odor-based systems to catch both species. We suggest that (R)-(+)-gamma-decalactone could be used as a master signal in monitoring programs for these vulnerable beetle species. which are both regarded as indicators of the associated insect fauna of the threatened habitat of old hollow trees.


Assuntos
Besouros/fisiologia , Conservação dos Recursos Naturais , Atrativos Sexuais/farmacologia , Animais , Monitoramento Ambiental , Feminino , Larva/crescimento & desenvolvimento , Masculino , Odorantes , Dinâmica Populacional , Comportamento Predatório , Árvores
4.
J Chem Ecol ; 29(3): 575-87, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12757320

RESUMO

Osmoderma eremita (Scopoli) is an endangered scarab beetle living in hollow trees. It has mainly been known for its characteristic odor, typically described as a fruity, peachlike or plumlike aroma. The odor emanating from a single beetle can sometimes be perceived from a distance of several meters. In this paper, we show that the characteristic odor from O. eremita is caused by the compound (R)-(+)-gamma-decalactone, released in large quantities mainly or exclusively by male beetles. Antennae from male and female beetles responded in a similar way to (R)-(+)-gamma-decalactone in electroantennographic recordings. Field trapping experiments showed that (R)-(+)-gamma-decalactone is a pheromone attracting female beetles. Lactones similar to (R)-(+)-gamma-decalactone are frequently used as female-released sex pheromones by phytophagous scarabs. This is, however, the first evidence of a lactone used as a male-produced pheromone in scarab beetles. We propose that the strong signal from males is a sexually selected trait used to compete for females and matings. The signal could work within trees but also act as a guide to tree hollows, which are an essential resource for O. eremita. Males may, thus, attract females dispersing from their natal tree by advertising a suitable habitat. This signal could also be exploited by other males searching for tree hollows or for females, which would explain the catch of several males in our traps.


Assuntos
Besouros/fisiologia , Lactonas , Atrativos Sexuais/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Lactonas/administração & dosagem , Lactonas/química , Lactonas/farmacologia , Masculino , Odorantes , Atrativos Sexuais/administração & dosagem , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia
5.
Oecologia ; 126(3): 363-370, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28547450

RESUMO

The dispersal of an endangered beetle, Osmoderma eremita, that lives in tree hollows, was studied by mark-release-recapture with pitfall traps. As only a small proportion of all dispersals is observed by this method, a simulation model was constructed to estimate the dispersal rate per individual. The model results suggest that 15% of the adults leave the original tree for another hollow tree, and consequently most individuals remain in the same tree throughout their entire life. This suggests that each hollow tree sustains a local population with limited connection with the populations in surrounding trees. It supports the view that O. eremita has a metapopulation structure, with each tree possibly sustaining a local population, and with the population in an assemblage of trees forming a metapopulation. Low dispersal rate and range make the species vulnerable to habitat fragmentation, probably at a scale of only a few hundred meters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...