Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(2): 1875-1884, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209340

RESUMO

We report on a novel combined laser pulse shaping and dynamic wavelength encoding capability based on a simple architecture implementing direct space to time mapping. There are several potential applications that can be enabled by the ability to control the instantaneous intensity or wavelength of an optical waveform on a picosecond-to-nanosecond timescale. To our knowledge, no known methods can access this temporal regime with a practical architecture. Here, we demonstrate an extension of the Space-Time Induced Linearly Encoded Transcription for Temporal Optimization (STILETTO) technique that can generate optical waveforms with a programmable instantaneous wavelength vs. time. We experimentally demonstrate the technique by generating self-gated spectrograms and show that it can encode dynamic wavelength vs time profiles at timescales not achievable by any other known method.

2.
Opt Lett ; 46(8): 1832-1835, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857081

RESUMO

We demonstrate a novel, to the best of our knowledge, extension of optical arbitrary waveform generation capable of picosecond resolution over nanosecond duration. The method, called space-time induced linearly encoded transcription for temporal optimization, is based on direct space-to-time pulse shaping and is extended here to single-mode output with a programmable temporal profile. We develop the theory of operation and discuss ultimate limits on resolution, record length, and efficiency. We report on the results of an experimental demonstration showing ∼1ps resolution over 600 ps.

3.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095614

RESUMO

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

4.
Opt Express ; 27(5): 7354-7364, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876300

RESUMO

We report an effect potentially harmful occurring in regenerative amplifiers due to stimulated Brillouin scattering (SBS). Most high energy laser facilities use phase-modulated pulses to prevent the transverse SBS effect in large optical components and to smooth the focal spot on target. However, this kind of pulse format may undergo a detrimental effect known as frequency modulation to amplitude modulation (FM-AM) conversion in the presence of spectral distortions. In the present letter, we show experimentally and numerically, that SBS can also potentially be created in the regenerative amplifier located in the front-end. In this scenario, some of the side bands of the pulse reflected by regen end-cavity mirror may act as a seed for SBS in an optical component, if the pulse spectrum contains frequency components exactly separated by the Brillouin frequency shift. This self-seeded SBS induces amplitude modulation with a nonlinear dependence that may be detrimental during down-stream propagation. However, we show that a careful choice of the modulation frequencies can mitigate this effect.

5.
Opt Lett ; 42(21): 4414-4417, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088180

RESUMO

We demonstrate a novel, single-shot recording technology for transient optical signals. A resolution of 0.4 ps over a record length of 54 ps was demonstrated. Here, a pump pulse crossing through a signal samples a diagonal "slice" of space-time, enabling a camera to record spatially the time content of the signal. Unlike related χ(2)-based cross-correlation techniques, here the signal is sampled through optically pumped carriers that modify the refractive index of a silicon wafer. Surrounding the wafer with birefringent retarders enables two time-staggered, orthogonally polarized signal copies to probe the wafer. Recombining the copies at a final crossed polarizer destructively interferes with them, except during the brief stagger window, where a differential phase shift is incurred. This enables the integrating response of the rapidly excited but persistent carriers to be optically differentiated. This sampling mechanism has several advantages that enable scaling to long record lengths, including making use of large, inexpensive semiconductor wafers, eliminating the need for phase matching, broad insensitivity to the spectral and angular properties of the pump, and overall hardware simplicity.

6.
Appl Opt ; 40(31): 5742-7, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18364865

RESUMO

We describe a photonic device based on a high-finesse, whispering-gallery-mode disk resonator that can be used for the detection of biological pathogens. This device operates by means of monitoring the change in transfer characteristics of the disk resonator when biological materials fall onto its active area. High sensitivity is achieved because the light wave interacts many times with each pathogen as a consequence of the resonant recirculation of light within the disk structure. Specificity of the detected substance can be achieved when a layer of antibodies or other binding material is deposited onto the active area of the resonator. Formulas are presented that allow the sensitivity of the device to be quantified and that show that, under optimum conditions, as few as 100 molecules can be detected.

7.
Opt Lett ; 25(4): 257-9, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18059847

RESUMO

All known polarizers operate through a separation of orthogonal electric field components, one of which is subsequently discarded. As a result, 50% of the unpolarized incident light is wasted in the process of conversion to polarized light. We demonstrate a new method by which we use the optical power in the ordinarily discarded component as the pump to amplify the retained component through photorefractive two-beam coupling to achieve greater than 50% throughput.

8.
Opt Lett ; 24(12): 847-9, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18073873

RESUMO

We predict dramatically reduced switching thresholds for nonlinear optical devices incorporating fiber ring resonators. The circulating power in such a resonator is much larger than the incident power; also, the phase of the transmitted light varies rapidly with the single-pass phase shift. The combined action of these effects leads to a finesse-squared reduction in the switching threshold, allowing for photonic switching devices that operate at milliwatt power levels in ordinary optical fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...