Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Intensive Care Med Exp ; 12(1): 21, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424411

RESUMO

BACKGROUND: Obtaining a properly fitting non-invasive ventilation (NIV) mask to treat acute respiratory failure is a major challenge, especially in young children and patients with craniofacial abnormalities. Personalization of NIV masks holds promise to improve pediatric NIV efficiency. As current customization methods are relatively time consuming, this study aimed to test the air leak and surface pressure performance of personalized oronasal face masks using 3D printed soft materials. Personalized masks of three different biocompatible materials (silicone and photopolymer resin) were developed and tested on three head models of young children with abnormal facial features during preclinical bench simulation of pediatric NIV. Air leak percentages and facial surface pressures were measured and compared for each mask. RESULTS: Personalized NIV masks could be successfully produced in under 12 h in a semi-automated 3D production process. During NIV simulation, overall air leak performance and applied surface pressures were acceptable, with leak percentages under 30% and average surface pressure values mostly remaining under normal capillary pressure. There was a small advantage of the masks produced with soft photopolymer resin material. CONCLUSION: This first, proof-of-concept bench study simulating NIV in children with abnormal facial features, showed that it is possible to obtain biocompatible, personalized oronasal masks with acceptable air leak and facial surface pressure performance using a relatively short, and semi-automated production process. Further research into the clinical value and possibilities for application of personalized NIV masks in critically ill children is needed.

2.
Intensive Care Med Exp ; 11(1): 25, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121963

RESUMO

BACKGROUND: Perioperative acute kidney injury (AKI) caused by ischemia-reperfusion (IR) is a significant contributor to mortality and morbidity after major surgery. Furosemide is commonly used in postoperative patients to promote diuresis and reduce tissue edema. However, the effects of furosemide on renal microcirculation, oxygenation and function are poorly understood during perioperative period following ischemic insult. Herein, we investigated the effects of furosemide in rats subjected IR insult. METHODS: 24 Wistar albino rats were divided into 4 groups, with 6 in each; Sham-operated Control (C), Control + Furosemide (C + F), ischemia/reperfusion (IR), and IR + F. After induction of anesthesia (BL), supra-aortic occlusion was applied to IR and IR + F groups for 45 min followed by ongoing reperfusion for 15 min (T1) and 2 h (T2). Furosemide infusion was initiated simultaneously in the intervention groups after ischemia. Renal blood flow (RBF), vascular resistance (RVR), oxygen delivery (DO2ren) and consumption (VO2ren), sodium reabsorption (TNa+), oxygen utilization efficiency (VO2/TNa+), cortical (CµO2) and medullary (MµO2) microvascular oxygen pressures, urine output (UO) and creatinine clearance (Ccr) were measured. Biomarkers of inflammation, oxidative and nitrosative stress were measured and kidneys were harvested for histological analysis. RESULTS: IR significantly decreased RBF, mainly by increasing RVR, which was exacerbated in the IR + F group at T2 (2198 ± 879 vs 4233 ± 2636 dyne/s/cm5, p = 0.07). CµO2 (61.6 ± 6.8 vs 86 ± 6.6 mmHg) and MµO2 (51.1 ± 4.1 vs 68.7 ± 4.9 mmHg, p < 0.05) were both reduced after IR and did not improve by furosemide. Moreover, VO2/TNa+ increased in the IR + F group at T2 with respect to the IR group (IR: 3.3 ± 2 vs IR + F: 8.2 ± 10 p = 0.07) suggesting a possible deterioration of oxygen utilization. Ccr did not change, but plasma creatinine increased significantly in IR + F groups. Histopathology revealed widespread damage both in the cortex and medulla in IR, IR + F and C + F groups. CONCLUSION: Renal microvascular oxygenation, renal function, renal vascular resistance, oxygen utilization and damage were not improved by furosemide administration after IR insult. Our study suggests that furosemide may cause additional structural and functional impairment to the kidney following ischemic injury and should be used with caution.

3.
Eur J Nucl Med Mol Imaging ; 31(2): 222-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15129704

RESUMO

A realistic 3-D gated cardiac phantom with known left ventricular (LV) volumes and ejection fractions (EFs) was produced to evaluate quantitative measurements obtained from gated myocardial single-photon emission tomography (SPET). The 3-D gated cardiac phantom was designed and constructed to fit into the Data Spectrum anthropomorphic torso phantom. Flexible silicone membranes form the inner and outer walls of the simulated left ventricle. Simulated LV volumes can be varied within the range 45-200 ml. The LV volume curve has a smooth and realistic clinical shape that is produced by a specially shaped cam connected to a piston. A fixed 70-ml stroke volume is applied for EF measurements. An ECG signal is produced at maximum LV filling by a controller unit connected to the pump. This gated cardiac phantom will be referred to as the Amsterdam 3-D gated cardiac phantom, or, in short, the AGATE cardiac phantom. SPET data were acquired with a triple-head SPET system. Data were reconstructed using filtered back-projection following pre-filtering and further processed with the Quantitative Gated SPECT (QGS) software to determine LV volume and EF values. Ungated studies were performed to measure LV volumes ranging from 45 ml to 200 ml. The QGS-determined LV volumes were systematically underestimated. For different LV combinations, the stroke volumes measured were consistent at 60-61 ml for 8-frame studies and 63-65 ml for 16-frame studies. QGS-determined EF values were slightly overestimated between 1.25% EF units for 8-frame studies and 3.25% EF units for 16-frame studies. In conclusion, the AGATE cardiac phantom offers possibilities for quality control, testing and validation of the whole gated cardiac SPET sequence, and testing of different acquisition and processing parameters and software.


Assuntos
Análise de Falha de Equipamento , Imagem do Acúmulo Cardíaco de Comporta/instrumentação , Coração/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Desenho de Equipamento , Imagem do Acúmulo Cardíaco de Comporta/métodos , Imagem do Acúmulo Cardíaco de Comporta/normas , Ventrículos do Coração/diagnóstico por imagem , Humanos , Países Baixos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Volume Sistólico , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada de Emissão de Fóton Único/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...