Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 4(11): e1039764, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26451313

RESUMO

In contrast to the accepted notion that tumor-derived signals polarize macrophages toward a protumorigenic M2 phenotype during tumor progression, we recently discovered that the inflammatory microenvironment is capable of driving macrophages toward an M2 phenotype. Moreover, our data suggests that inflammatory education is prominent during the early phases of hepatocellular carcinoma (HCC) suggesting that inflammatory modulation might effectively prevent HCC.

2.
Proc Natl Acad Sci U S A ; 111(49): 17582-7, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422452

RESUMO

The inflamed tumor microenvironment plays a critical role in tumorigenesis. However, the mechanisms through which immune cells, particularly macrophages, promote tumorigenesis have only been partially elucidated, and the full scope of signaling pathways supplying macrophages with protumorigenic phenotypes still remain largely unknown. Here we report that germ-line absence of c-Jun N-terminal phosphorylation at serines 63 and 73 impedes inflammation-associated hepatocarcinogenesis, yet deleting c-Jun only in hepatocytes does not inhibit hepatocellular carcinoma (HCC) formation. Moreover, in human HCC-bearing livers, c-Jun phosphorylation is found in inflammatory cells, whereas it is mostly absent from malignant hepatocytes. Interestingly, macrophages in livers of mice with chronic hepatitis gradually switch their phenotype along the course of disease. Macrophage phenotype and density are dictated by c-Jun phosphorylation, in vitro and in vivo. Transition of macrophage phenotype, from antitumorigenic to protumorigenic, occurs before tumorigenesis, resulting in the production of various chemokines, including chemokine (C-C motif) ligand 17 (CCL17) and CCL22. Such signals, emanating from the liver microenvironment, direct the recruitment of regulatory T cells, which are known to facilitate HCC growth. Our findings identify c-Jun phosphorylation as a key mediator of macrophage education and point to the recruitment of immunosuppressive regulatory T cells as a possible protumorigenic mechanism.


Assuntos
Macrófagos/citologia , Macrófagos/imunologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Quimiocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatite/metabolismo , Hepatócitos/citologia , Humanos , Imunidade Inata , Inflamação , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Fosforilação , Prognóstico , Estrutura Terciária de Proteína , Microambiente Tumoral
3.
Pharmacol Ther ; 138(2): 197-210, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23353703

RESUMO

The prevalence of obesity has increased dramatically in recent decades, reaching epidemic proportions. It is becoming clear that obesity is associated not only with type 2 diabetes mellitus and cardiovascular disease, but also with multiple types of cancer. Obesity is characterized by impaired adipose tissue function, leading to adipocyte hypertrophy, inflammation, hypoxia and induced angiogenesis, extracellular matrix remodeling and fibrosis as well as additional stress responses. While epidemiological data indicate that obesity is a well-established risk factor for certain malignancies, the molecular mechanisms underlying the link between obesity and cancer are still poorly understood. Recent data implicates systemic and paracrine factors secreted from adipose tissue during the obese state, promoting cancer development and progression. Here, we focus on the obesity-associated adipose tissue remodeling that may not only lead to metabolic complications, but also to a permissive pro-tumorigenic environment. Particular attention is given to the local pro-tumorigenic effects derived from adipocytes that present an important part of the tumor microenvironment of at least some cancers, in an attempt to describe the nature of the major players of the adipocyte-cancer cell crosstalk that dictates to a large extent tumor progression.


Assuntos
Adipócitos/patologia , Terapia de Alvo Molecular/métodos , Neoplasias/prevenção & controle , Obesidade/complicações , Adipócitos/imunologia , Adipócitos/metabolismo , Adipocinas/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Índice de Massa Corporal , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Resistência à Insulina , Neoplasias/epidemiologia , Neoplasias/etiologia , Neoplasias/patologia , Obesidade/tratamento farmacológico , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/patologia , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...