Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1641: 461981, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33684778

RESUMO

Asymmetrical flow field-flow fractionation (AF4) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) has been widely used to characterize metal containing particles. This study demonstrates the advantages of coupling AF4 with ICP-time-of-flight mass spectrometry (ICP-TOFMS) in standard and single particle modes to determine size distribution, elemental composition, and number concentration of composite particles. The coupled system was used to characterize two complex particle mixtures. The first mixture consisted of particles extracted from micro-alloyed steels with two size populations of different elemental composition. The second mixture consisted of particles extracted from soil spiked with various engineered nanoparticles (ENPs). The equivalent hydrodynamic sizes of individual micro-alloyed steel particles were up to 6 times larger than the sizes determined by single particle (sp)-ICP-TOFMS. The larger AF4 sizes were attributed to the presence of a surface coating, which is not reflected in the core size determined by sp-ICP-TOFMS. Two particle populations could not be separated by AF4 due to their broad size distributions but were resolved by sp-ICP-TOFMS using their unique elemental signatures. Multi-angle light scattering and ICP-TOFMS signals of soil suspensions increased with the spiked ENP concentrations. However, only after conducting full element screening and single particle fingerprinting by ICP-TOFMS could this increase be attributed to enhanced extraction efficiency of natural particles and the risk for false conclusions be eliminated. In this study, we describe how AF4 coupled to ICP-TOFMS can be applied to study complex samples of inorganic particles which contain organic compounds.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Espectrometria de Massas/métodos , Nanopartículas/química , Nitrilas/química , Tamanho da Partícula , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Solo/química , Análise Espectral , Titânio/química
2.
Anal Chem ; 91(1): 943-950, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30477298

RESUMO

We introduce a new method for the characterization of particles extracted from steels. Microalloyed steels were dissolved to extract niobium and titanium carbonitride particles, which are of critical importance for the mechanical properties of the steel. The size distribution and chemical composition of the particles were analyzed by single-particle inductively coupled plasma mass spectrometry and compared to results from electron microscopy. Mass spectrometry rapidly provided data on a large number of particles (>2000 in 1 min) and indicated two particle populations that differed in size and composition: smaller particles contained only niobium, whereas larger particles contained both niobium and titanium. Electron microscopy of a much smaller number of particles confirmed the results and indicated that the larger particles had complex, overgrown structures. The combination of single-particle mass spectrometry and electron microscopy enables a better understanding of the precipitation processes that form the particles during steel production at different stages of the thermomechanical-rolling process. A better understanding of the processes helps to improve the rolling process in order to exploit the alloying elements optimally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...