Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2839: 131-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008252

RESUMO

Heme o is an Fe-porphyrin involved in the majority of aerobic respiration pathways found in all three domains of life. In eukaryotes and most aerobic prokaryotes, heme o functions solely as the precursor for the synthesis of heme a, a necessary cofactor for most heme-copper terminal oxidases. In some prokaryotes, such as Escherichia coli (E. coli), heme o can serve as a cofactor for heme-copper oxidases instead of heme a. Given its role as a key substrate or cofactor, purified heme o promises to be a valuable resource for the study of heme-copper oxidase assembly and activity. However, commercially available heme o is sold in limited quantities at a relatively high cost (compared to the prototypical heme b), making the use of heme o purchased from suppliers unfeasible for such studies. In this chapter, we present step-by-step methods both for heme o isolation from E. coli overexpressing heme o synthase and for HPLC analysis of cellular hemes (i.e., heme o and heme b).


Assuntos
Escherichia coli , Heme , Heme/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida de Alta Pressão , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
J Inorg Biochem ; 256: 112542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631103

RESUMO

Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.


Assuntos
Compostos de Amônio , Nitratos , Oxirredução , Nitratos/metabolismo , Nitratos/química , Compostos de Amônio/metabolismo , Citocromos c1/metabolismo , Citocromos c1/química , Nitrato Redutases/metabolismo , Nitrato Redutases/química , Domínio Catalítico , Transporte de Elétrons , Nitritos/metabolismo , Citocromos a1
3.
Arch Biochem Biophys ; 744: 109665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348627

RESUMO

In eukaryotes and many aerobic prokaryotes, the final step of aerobic respiration is catalyzed by an aa3-type cytochrome c oxidase, which requires a modified heme cofactor, heme a. The conversion of heme b, the prototypical cellular heme, to heme o and ultimately to heme a requires two modifications, the latter of which is conversion of a methyl group to an aldehyde, catalyzed by heme a synthase (HAS). The N- and C-terminal halves of HAS share homology, and each half contains a heme-binding site. Previous reports indicate that the C-terminal site is occupied by a heme b cofactor. The N-terminal site may function as the substrate (heme o) binding site, although this has not been confirmed experimentally. Here, we assess the role of conserved residues from the N- and C-terminal heme-binding sites in HAS from prokaryotic (Shewanella oneidensis) and eukaryotic (Saccharomyces cerevisiae) species - SoHAS/CtaA and ScHAS/Cox15, respectively. A glutamate within the N-terminal site is found to be critical for activity in both types of HAS, consistent with the hypothesis that a carbocation forms transiently during catalysis. In contrast, the residue occupying the analogous C-terminal position is dispensable for enzyme activity. In SoHAS, the C-terminal heme ligands are critical for stability, while in ScHAS, substitutions in either heme-binding site have little effect on global structure. In both species, in vivo accumulation of heme o requires the presence of an inactive HAS variant, highlighting a potential regulatory role for HAS in heme o biosynthesis.


Assuntos
Ácido Glutâmico , Proteínas de Saccharomyces cerevisiae , Ácido Glutâmico/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Ferroquelatase , Heme/metabolismo
5.
Biotechnol Biofuels Bioprod ; 15(1): 45, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35509012

RESUMO

BACKGROUND: A lignocellulose-to-biofuel biorefinery process that enables multiple product streams is recognized as a promising strategy to improve the economics of this biorefinery and to accelerate technology commercialization. We recently identified an innovative pretreatment technology that enables of the production of sugars at high yields while simultaneously generating a high-quality lignin stream that has been demonstrated as both a promising renewable polyol replacement for polyurethane applications and is highly susceptible to depolymerization into monomers. This technology comprises a two-stage pretreatment approach that includes an alkaline pre-extraction followed by a metal-catalyzed alkaline-oxidative pretreatment. Our recent work demonstrated that H2O2 and O2 act synergistically as co-oxidants during the alkaline-oxidative pretreatment and could significantly reduce the pretreatment chemical input while maintaining high sugar yields (~ 95% glucose and ~ 100% xylose of initial sugar composition), high lignin yields (~ 75% of initial lignin), and improvements in lignin usage. RESULTS: This study considers the economic impact of these advances and provides strategies that could lead to additional economic improvements for future commercialization. The results of the technoeconomic analysis (TEA) demonstrated that adding O2 as a co-oxidant at 50 psig for the alkaline-oxidative pretreatment and reducing the raw material input reduced the minimum fuel selling price from $1.08/L to $0.85/L, assuming recoverable lignin is used as a polyol replacement. If additional lignin can be recovered and sold as more valuable monomers, the minimum fuel selling price (MFSP) can be further reduced to $0.73/L. CONCLUSIONS: The present work demonstrated that high sugar and lignin yields combined with low raw material inputs and increasing the value of lignin could greatly increase the economic viability of a poplar-based biorefinery. Continued research on integrating sugar production with lignin valorization is thus warranted to confirm this economic potential as the technology matures.

6.
Nat Commun ; 13(1): 2050, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440551

RESUMO

Diaryl ethers undergo electrocatalytic hydrogenolysis (ECH) over skeletal Ni cathodes in a mild, aqueous process that achieves direct C-O cleavage without initial benzene ring saturation. Mechanistic studies find that aryl phenyl ethers with a single para or meta functional group (methyl, methoxy, or hydroxy) are selectively cleaved to the substituted benzene and phenol, in contrast to recently reported homogeneous catalytic cleavage processes. Ortho positioning of substituents reverses this C-O bond selectivity, except for the 2-phenoxyphenol case. Together with isotope labeling and co-solvent studies, these results point to two distinct cleavage mechanisms: (a) dual-ring coordination and C-H activation, leading to vicinal elimination to form phenol and a surface-bound aryne intermediate which is then hydrogenated and released as the arene; and (b) surface binding in keto form by the phenolic ring of the hydroxy-substituted substrates, followed by direct displacement of the departing phenol. Notably, acetone inhibits the well-known reduction of phenol to cyclohexanol, affording control of product ring saturation. A byproduct of this work is the discovery that the ECH treatment completely defluorinates substrates bearing aromatic C-F and C-CF3 groupings.


Assuntos
Éteres , Fenol , Benzeno , Derivados de Benzeno , Catálise , Eletrodos , Éteres/química , Níquel/química , Oxigênio/química , Fenol/química
7.
ACS Cent Sci ; 7(11): 1831-1837, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34841056

RESUMO

Lignin has long been recognized as a potential feedstock for aromatic molecules; however, most lignin depolymerization methods create a complex mixture of products. The present study describes an alkaline aerobic oxidation method that converts lignin extracted from poplar into a collection of oxygenated aromatics, including valuable commercial compounds such as vanillin and p-hydroxybenzoic acid. Centrifugal partition chromatography (CPC) is shown to be an effective method to isolate the individual compounds from the complex product mixture. The liquid-liquid extraction method proceeds in two stages. The crude depolymerization mixture is first subjected to ascending-mode extraction with the Arizona solvent system L (pentane/ethyl acetate/methanol/water 2:3:2:3), enabling isolation of vanillin, syringic acid, and oligomers. The remaining components, syringaldehyde, vanillic acid, and p-hydroxybenzoic acid (pHBA), were resolved by using ascending-mode extraction with solvent mixture comprising dichloromethane/methanol/water (10:6:4) separation. These results showcase CPC as an effective technology that could provide scalable access to valuable chemicals from lignin and other biomass-derived feedstocks.

8.
Crit Rev Biochem Mol Biol ; 56(6): 640-668, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34428995

RESUMO

Aerobic respiration is a key energy-producing pathway in many prokaryotes and virtually all eukaryotes. The final step of aerobic respiration is most commonly catalyzed by heme-copper oxidases embedded in the cytoplasmic or mitochondrial membrane. The majority of these terminal oxidases contain a prenylated heme (typically heme a or occasionally heme o) in the active site. In addition, many heme-copper oxidases, including mitochondrial cytochrome c oxidases, possess a second heme a cofactor. Despite the critical role of heme a in the electron transport chain, the details of the mechanism by which heme b, the prototypical cellular heme, is converted to heme o and then to heme a remain poorly understood. Recent structural investigations, however, have helped clarify some elements of heme a biosynthesis. In this review, we discuss the insight gained from these advances. In particular, we present a new structural model of heme o synthase (HOS) based on distance restraints from inferred coevolutionary relationships and refined by molecular dynamics simulations that are in good agreement with the experimentally determined structures of HOS homologs. We also analyze the two structures of heme a synthase (HAS) that have recently been solved by other groups. For both HOS and HAS, we discuss the proposed catalytic mechanisms and highlight how new insights into the heme-binding site locations shed light on previously obtained biochemical data. Finally, we explore the implications of the new structural data in the broader context of heme trafficking in the heme a biosynthetic pathway and heme-copper oxidase assembly.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Heme/análogos & derivados , Animais , Archaea/metabolismo , Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eucariotos/metabolismo , Heme/biossíntese , Heme/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Transporte Proteico
9.
Biochemistry ; 60(23): 1853-1867, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061493

RESUMO

Cytochrome c nitrite reductases (CcNIR or NrfA) play important roles in the global nitrogen cycle by conserving the usable nitrogen in the soil. Here, the electron storage and distribution properties within the pentaheme scaffold of Geobacter lovleyi NrfA were investigated via electron paramagnetic resonance (EPR) spectroscopy coupled with chemical titration experiments. Initially, a chemical reduction method was established to sequentially add electrons to the fully oxidized protein, 1 equiv at a time. The step-by-step reduction of the hemes was then followed using ultraviolet-visible absorption and EPR spectroscopy. EPR spectral simulations were used to elucidate the sequence of heme reduction within the pentaheme scaffold of NrfA and identify the signals of all five hemes in the EPR spectra. Electrochemical experiments ascertain the reduction potentials for each heme, observed in a narrow range from +10 mV (heme 5) to -226 mV (heme 3) (vs the standard hydrogen electrode). On the basis of quantitative analysis and simulation of the EPR data, we demonstrate that hemes 4 and 5 are reduced first (before the active site heme 1) and serve the purpose of an electron storage unit within the protein. To probe the role of the central heme 3, an H108M NrfA variant was generated where the reduction potential of heme 3 is shifted positively (from -226 to +48 mV). The H108M mutation significantly impacts the distribution of electrons within the pentaheme scaffold and the reduction potentials of the hemes, reducing the catalytic activity of the enzyme to 1% compared to that of the wild type. We propose that this is due to heme 3's important role as an electron gateway in the wild-type enzyme.


Assuntos
Grupo dos Citocromos c/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Geobacter/metabolismo , Nitrato Redutases/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Grupo dos Citocromos c/química , Citocromos a1/química , Citocromos c1/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Geobacter/química , Heme/química , Heme/metabolismo , Modelos Moleculares , Nitrato Redutases/química , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Oxirredução , Conformação Proteica
10.
ChemSusChem ; 13(17): 4394-4399, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32668064

RESUMO

Lignin may serve as a renewable feedstock for the production of chemicals and fuels if mild, scalable processes for its depolymerization can be devised. The use of small organic thiols represents a bioinspired strategy to cleave the ß-O-4 bond, the most common linkage in lignin. In the present study, synthetic ß-O-4 linked polymers were treated with organic thiols, yielding up to 90 % cleaved monomer products. Lignin extracted from poplar was also treated with organic thiols resulting in molecular weight reductions as high as 65 % (Mn ) in oxidized lignin. Thiol-based cleavage of other lignin linkages was also explored in small-molecule model systems to uncover additional potential pathways by which thiols might depolymerize lignin. The success of thiol-mediated cleavage on model dimers, polymers, and biomass-derived lignin illustrates the potential utility of small redox-active molecules to penetrate complex polymer matrices for depolymerization and subsequent valorization of lignin into fuels and chemicals.

11.
J Biol Chem ; 295(33): 11455-11465, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32518164

RESUMO

Cytochrome c nitrite reductase (NrfA) catalyzes the reduction of nitrite to ammonium in the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a process that competes with denitrification, conserves nitrogen, and minimizes nutrient loss in soils. The environmental bacterium Geobacter lovleyi has recently been recognized as a key driver of DNRA in nature, but its enzymatic pathway is still uncharacterized. To address this limitation, here we overexpressed, purified, and characterized G. lovleyi NrfA. We observed that the enzyme crystallizes as a dimer but remains monomeric in solution. Importantly, its crystal structure at 2.55-Å resolution revealed the presence of an arginine residue in the region otherwise occupied by calcium in canonical NrfA enzymes. The presence of EDTA did not affect the activity of G. lovleyi NrfA, and site-directed mutagenesis of this arginine reduced enzymatic activity to <3% of the WT levels. Phylogenetic analysis revealed four separate emergences of Arg-containing NrfA enzymes. Thus, the Ca2+-independent, Arg-containing NrfA from G. lovleyi represents a new subclass of cytochrome c nitrite reductase. Most genera from the exclusive clades of Arg-containing NrfA proteins are also represented in clades containing Ca2+-dependent enzymes, suggesting convergent evolution.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Geobacter/metabolismo , Nitrato Redutases/metabolismo , Compostos de Amônio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Citocromos a1/química , Citocromos a1/genética , Citocromos c1/química , Citocromos c1/genética , Geobacter/química , Geobacter/genética , Cinética , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/genética , Nitratos/metabolismo , Filogenia , Conformação Proteica
12.
J Am Chem Soc ; 142(8): 4037-4050, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017546

RESUMO

We present here detailed mechanistic studies of electrocatalytic hydrogenation (ECH) in aqueous solution over skeletal nickel cathodes to probe the various paths of reductive catalytic C-O bond cleavage among functionalized aryl ethers relevant to energy science. Heterogeneous catalytic hydrogenolysis of aryl ethers is important both in hydrodeoxygenation of fossil fuels and in upgrading of lignin from biomass. The presence or absence of simple functionalities such as carbonyl, hydroxyl, methyl, or methoxyl groups is known to cause dramatic shifts in reactivity and cleavage selectivity between sp3 C-O and sp2 C-O bonds. Specifically, reported hydrogenolysis studies with Ni and other catalysts have hinted at different cleavage mechanisms for the C-O ether bonds in α-keto and α-hydroxy ß-O-4 type aryl ether linkages of lignin. Our new rate, selectivity, and isotopic labeling results from ECH reactions confirm that these aryl ethers undergo C-O cleavage via distinct paths. For the simple 2-phenoxy-1-phenylethane or its alcohol congener, 2-phenoxy-1-phenylethanol, the benzylic site is activated via Ni C-H insertion, followed by beta elimination of the phenoxide leaving group. But in the case of the ketone, 2-phenoxyacetophenone, the polarized carbonyl π system apparently binds directly with the electron rich Ni cathode surface without breaking the aromaticity of the neighboring phenyl ring, leading to rapid cleavage. Substituent steric and electronic perturbations across a broad range of ß-O-4 type ethers create a hierarchy of cleavage rates that supports these mechanistic ideas while offering guidance to allow rational design of the catalytic method. On the basis of the new insights, the usage of cosolvent acetone is shown to enable control of product selectivity.

13.
J Biotechnol ; 308: 148-155, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31830497

RESUMO

Lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent oxidative enzymes, boost the degradation of polysaccharides such as cellulose, chitin, and others. While experimental methods are used to validate LPMO function, a computational method that can aid experimental methods and provide fast and accurate classification of sequences into LPMOs and its families would be an important step towards understanding the breadth of contributions these enzymes make in deconstruction of recalcitrant polysaccharides. In this study, we developed a machine learning-based tool called PreDSLpmo that employs two different approaches to functionally classify protein sequences into the major LPMO families (AA9 and AA10). The first approach uses a traditional neural network or multilayer percerptron-based approach, while the second employs bi-directional long short-term memory for sequence classification. Our method shows improvement in predictive power when compared with dbCAN2, an existing HMM-profile-based CAZyme predicting tool, on both validation and independent benchmark set.


Assuntos
Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Anotação de Sequência Molecular/métodos , Cobre/metabolismo , Aprendizado de Máquina , Família Multigênica , Redes Neurais de Computação , Software
14.
Biotechnol Biofuels ; 12: 213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516552

RESUMO

BACKGROUND: In this work, three pretreatments under investigation at the DOE Bioenergy Research Centers (BRCs) were subjected to a side-by-side comparison to assess their performance on model bioenergy hardwoods (a eucalyptus and a hybrid poplar). These include co-solvent-enhanced lignocellulosic fractionation (CELF), pretreatment with an ionic liquid using potentially biomass-derived components (cholinium lysinate or [Ch][Lys]), and two-stage Cu-catalyzed alkaline hydrogen peroxide pretreatment (Cu-AHP). For each of the feedstocks, the pretreatments were assessed for their impact on lignin and xylan solubilization and enzymatic hydrolysis yields as a function of enzyme loading. Lignins recovered from the pretreatments were characterized for polysaccharide content, molar mass distributions, ß-aryl ether content, and response to depolymerization by thioacidolysis. RESULTS: All three pretreatments resulted in significant solubilization of lignin and xylan, with the CELF pretreatment solubilizing the majority of both biopolymer categories. Enzymatic hydrolysis yields were shown to exhibit a strong, positive correlation with the lignin solubilized for the low enzyme loadings. The pretreatment-derived solubles in the [Ch][Lys]-pretreated biomass were presumed to contribute to inhibition of enzymatic hydrolysis in the eucalyptus as a substantial fraction of the pretreatment liquor was carried forward into hydrolysis for this pretreatment. The pretreatment-solubilized lignins exhibited significant differences in polysaccharide content, molar mass distributions, aromatic monomer yield by thioacidolysis, and ß-aryl ether content. Key trends include a substantially higher polysaccharide content in the lignins recovered from the [Ch][Lys] pretreatment and high ß-aryl ether contents and aromatic monomer yields from the Cu-AHP pretreatment. For all lignins, the 13C NMR-determined ß-aryl ether content was shown to be correlated with the monomer yield with a second-order functionality. CONCLUSIONS: Overall, it was demonstrated that the three pretreatments highlighted in this study demonstrated uniquely different functionalities in reducing biomass recalcitrance and achieving higher enzymatic hydrolysis yields for the hybrid poplar while yielding a lignin-rich stream that may be suitable for valorization. Furthermore, modification of lignin during pretreatment, particularly cleavage of ß-aryl ether bonds, is shown to be detrimental to subsequent depolymerization.

15.
ChemSusChem ; 12(21): 4775-4779, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31418534

RESUMO

The nucleophilic and reductive properties of thiolates and thiols make them ideal candidates as redox mediators via the thiol/disulfide couple. One mechanism for biological lignin depolymerization entails reduction of keto aryl ether bonds by an SN 2 mechanism with the thiol redox mediator glutathione. In this study, mimicking this chemistry in a simple protein- and metal-free process, several small organic thiols are surveyed for their ability to cleave aryl keto ethers that model the ß-O-4 linkages found in partially oxidized lignin. In polar aprotic solvents, ß-mercaptoethanol and dithiothreitol yielded up to 100 % formation of phenol and acetophenone products from 2-phenoxyacetophenone, but not from its reduced alcohol congener. The effects of reaction conditions and of substituents on the aryl rings and the keto ether linkage are assessed. These results, together with activation barriers computed by quantum chemical simulations and direct observation of the expected intermediate thioether, point to an SN 2 mechanism. This study confirms that small organic thiols can reductively break down lignin-relevant keto aryl ether linkages.

16.
J Biol Chem ; 293(42): 16426-16439, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30181213

RESUMO

The heme a molecule is an obligatory cofactor in the terminal enzyme complex of the electron transport chain, cytochrome c oxidase. Heme a is synthesized from heme o by a multi-spanning inner membrane protein, heme a synthase (Cox15 in the yeast Saccharomyces cerevisiae). The insertion of heme a is critical for cytochrome c oxidase function and assembly, but this process has not been fully elucidated. To improve our understanding of heme a insertion into cytochrome c oxidase, here we investigated the protein-protein interactions that involve Cox15 in S. cerevisiae In addition to observing Cox15 in homooligomeric complexes, we found that a portion of Cox15 also associates with the mitochondrial respiratory supercomplexes. When supercomplex formation was abolished, as in the case of stalled cytochrome bc1 or cytochrome c oxidase assembly, Cox15 maintained an interaction with select proteins from both respiratory complexes. In the case of stalled cytochrome bc1 assembly, Cox15 interacted with the late-assembling cytochrome c oxidase subunit, Cox13. When cytochrome c oxidase assembly was stalled, Cox15 unexpectedly maintained its interaction with the cytochrome bc1 protein, Cor1. Our results indicate that Cox15 and Cor1 continue to interact in the cytochrome bc1 dimer even in the absence of supercomplexes or when the supercomplexes are destabilized. These findings reveal that Cox15 not only associates with respiratory supercomplexes, but also interacts with the cytochrome bc1 dimer even in the absence of cytochrome c oxidase.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Deficiência de Citocromo-c Oxidase , Heme/análogos & derivados , Saccharomyces cerevisiae
17.
Bioresour Technol ; 266: 194-202, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982039

RESUMO

To improve sugar recovery and ethanol production from wheat straw, a sequential two-stage pretreatment process combining alkaline pre-extraction and acid catalyzed steam treatment was investigated. The results showed that alkaline pre-extraction using 8% (w/w) sodium hydroxide at 80 °C for 90 min followed by steam pretreatment with 3% (w/w) sulfur dioxide at 151 °C for 16 min was sufficient to prepare a substrate that could be efficiently hydrolyzed at high solid loadings. Moreover, alkaline pre-extraction reduced the process severity of steam pretreatment and decreased the generation of inhibitory compounds. During enzymatic hydrolysis, increasing solid loading decreased the yield of monomeric sugars. Enzymatic hydrolysis at 25% (w/v) solid loading, the yields of approximately 80% of glucose and 65% of xylose could be reached with an enzyme dosage of 25 mg protein/g glucan. Following fermentation of hydrolysate with sugar concentration of approximately 120 g/L, an ethanol concentration of 54.5 g/L was achieved.


Assuntos
Etanol , Açúcares , Triticum , Carboidratos , Fermentação , Hidrólise , Vapor
18.
Biotechnol Biofuels ; 11: 143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796084

RESUMO

BACKGROUND: When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H2O2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. RESULTS: After Cu-AHP pretreatment of 120 °C NaOH-H2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H2O2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H2O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. CONCLUSIONS: We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H2O pre-extraction.

20.
Biochemistry ; 55(22): 3165-73, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27186945

RESUMO

The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a water molecule. A computational analysis of this pathway in the [FeFe]-hydrogenase from Clostridium pasteurianum revealed that the solvent-exposed residue of the pathway (Glu282) forms hydrogen bonds to two residues outside of the pathway (Arg286 and Ser320), implying that these residues could function in regulating proton transfer. In this study, we show that substituting Arg286 with leucine eliminates hydrogen bonding with Glu282 and results in an ∼3-fold enhancement of H2 production activity when methyl viologen is used as an electron donor, suggesting that Arg286 may help control the rate of proton delivery. In contrast, substitution of Ser320 with alanine reduces the rate ∼5-fold, implying that it either acts as a member of the pathway or influences Glu282 to permit proton transfer. Interestingly, quantum mechanics/molecular mechanics and molecular dynamics calculations indicate that Ser320 does not play a structural role or indirectly influence the barrier for proton movement at the entrance of the channel. Rather, it may act as an additional proton acceptor for the pathway or serve in a regulatory role. While further studies are needed to elucidate the role of Ser320, collectively these data provide insights into the complex proton transport process.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/metabolismo , Clostridium/enzimologia , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Prótons , Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrogenase/química , Hidrogenase/genética , Transporte de Íons , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...