Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(8): 082501, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192091

RESUMO

Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of (20,21)Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by 6 orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of (21)Mg is in good agreement but that the mass of (20)Mg deviates by 3 σ. These measurements reduce the uncertainties in the masses of (20,21)Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin nonconserving universal sd USDA and USDB Hamiltonians or isospin nonconserving interactions based on chiral two- and three-nucleon forces.

2.
Rev Sci Instrum ; 85(2): 02B912, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593617

RESUMO

At the ISAC facility at TRIUMF radioactive ions are produced by bombarding solid targets with up to 100 µA of 500 MeV protons. The reaction products have to diffuse out of the hot target into an ion source. Normally, singly charged ions are extracted. They can be transported either directly to experiments or via an ECR charge state breeder to a post accelerator. Several different types of ion sources have to be used in order to deliver a large variety of rare isotope beams. At ISAC those are surface ion sources, forced electron beam arc discharge (FEBIAD) ion sources and resonant laser ionization sources. Recent development activities concentrated on increasing the selectivity for the ionization to suppress isobaric contamination in the beam. Therefore, a surface ion rejecting resonant laser ionization source (SIRLIS) has been developed to suppress ions from surface ionization. For the FEBIAD ion source a cold transfer line has been introduced to prevent less volatile components from reaching the ion source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...