Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biophys J ; 49(3): 629-43, 1986 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2421792

RESUMO

The effects of extracellular saxitoxin (STX) and tetrodotoxin (TTX) on gating current (IgON) were studied in voltage clamped crayfish giant axons. At a holding potential (VH) of -90 mV, integrated gating charge (QON) was found to be 56% suppressed when 200 nM STX was added to the external solution, and 75% suppressed following the addition of 200 nM TTX. These concentrations of toxin are sufficiently high to block greater than 99% of sodium channels. A smaller suppression of IgON was observed when 1 nM STX was used (KD = 1-2 nM STX). The suppression of IgON by external toxin was found to be hold potential dependent, with only minimal suppression observed at the most hyperpolarized hold potentials, -140 to -120 mV. The maximal effect of these toxins on IgON was observed at hold potentials where the QON vs. VH plot was found to be steepest, -100 to -80 mV. The suppression of IgON induced by TTX is partially relieved following the removal of fast inactivation by intracellular treatment with N-bromoacetamide (NBA). The effect of STX and TTX on IgON is equivalent to a hyperpolarizing shift in the steady state inactivation curve, with 200 nM STX and 200 nM TTX inducing shifts of 4.9 +/- 1.7 mV and 10.0 +/- 2.1 mV, respectively. Our results are consistent with a model where the binding of toxin displaces a divalent cation from a negatively charged site near the external opening of the sodium channel, thereby producing a voltage offset sensed by the channel gating apparatus.


Assuntos
Axônios/fisiologia , Canais Iônicos/fisiologia , Saxitoxina/farmacologia , Tetrodotoxina/farmacologia , Animais , Astacoidea , Axônios/efeitos dos fármacos , Condutividade Elétrica/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Cinética
3.
Biophys J ; 46(2): 205-18, 1984 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-6089923

RESUMO

The cationic dye methylene blue (MB+) blocks INa in a voltage and time-dependent manner and exhibits no frequency dependent block at 1 Hz when internally perfused in normal or pronase-treated crayfish axons. Peak INa decreases with increasing MB+ concentrations in the range 50 microM to 5 mM, but the blocking time constant approaches an asymptote at concentrations above 500 microM. IgON is not noticeably affected by internal MB+ at concentrations of 500 microM or below, in the absence of external tetrodotoxin (TTX). However, 5 mM MB+ produces a visible suppression of IgON that is reversible following washout. A pseudo-first-order analysis of MB+ blocking kinetics suggests a drug binding site deep in the transmembrane voltage field (dz = 0.85, KD = 11 microM at 0 mV). The voltage sensitivity of the individual rate constants is highly asymmetric, suggesting that the major energy barrier for MB+ is very close to the axoplasmic margin of the voltage field. Reversing the Na+ gradient and direction of INa has little effect on the kinetics of MB+ block. The kinetic properties of state-dependent vs. state-independent blocking schemes are investigated and compared with our observations of MB+ block. Analysis of hooked sodium tail currents following depolarization to various test potentials demonstrates quantitatively that MB+ binds in a state-dependent manner to open sodium channels. The appropriateness of first-order kinetic analysis of drug block is then considered in light of these observations.


Assuntos
Axônios/fisiologia , Canais Iônicos/fisiologia , Azul de Metileno/farmacologia , Sódio/metabolismo , Animais , Astacoidea , Axônios/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Cinética , Pronase , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...