Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soc Cogn Affect Neurosci ; 19(1)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38584414

RESUMO

Developments in cognitive neuroscience have led to the emergence of hyperscanning, the simultaneous measurement of brain activity from multiple people. Hyperscanning is useful for investigating social cognition, including joint action, because of its ability to capture neural processes that occur within and between people as they coordinate actions toward a shared goal. Here, we provide a practical guide for researchers considering using hyperscanning to study joint action and seeking to avoid frequently raised concerns from hyperscanning skeptics. We focus specifically on Electroencephalography (EEG) hyperscanning, which is widely available and optimally suited for capturing fine-grained temporal dynamics of action coordination. Our guidelines cover questions that are likely to arise when planning a hyperscanning project, ranging from whether hyperscanning is appropriate for answering one's research questions to considerations for study design, dependent variable selection, data analysis and visualization. By following clear guidelines that facilitate careful consideration of the theoretical implications of research design choices and other methodological decisions, joint action researchers can mitigate interpretability issues and maximize the benefits of hyperscanning paradigms.


Assuntos
Eletroencefalografia , Motivação , Humanos , Eletroencefalografia/métodos , Motivação/fisiologia , Encéfalo/fisiologia , Projetos de Pesquisa/normas , Cognição Social
3.
Neuroimage ; 257: 119326, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667334

RESUMO

Across a broad spectrum of interactions, humans exhibit a prominent tendency to synchronize their movements with one another. Traditionally, this phenomenon has been explained from the perspectives of predictive coding or dynamical systems theory. While these theories diverge with respect to whether individuals hold internal models of each other, they both assume a predictive or anticipatory mechanism enabling rhythmic interactions. However, the neural bases underpinning interpersonal synchronization are still a subject under active investigation. Here we provide evidence that the brain relies on a common oscillatory mechanism to pace self-generated rhythmic movements and to track the movements produced by a partner. By performing dual-electroencephalography recordings during a joint finger-tapping task, we identified an oscillatory component in the beta range (∼ 20 Hz), which was significantly modulated by both self-generated and other-generated movement. In conditions where the partners perceived each other, we observed periodic fluctuations of beta power as a function of the reciprocal movement cycles. Crucially, this modulation occurred both in visually and in auditorily coupled conditions, and was accompanied by recurrent periods of dyadic synchronized behavior. Our results show that periodic beta power modulations may be a critical mechanism underlying interpersonal synchronization, possibly enabling mutual predictions between coupled individuals, leading to co-regulation of timing and overt mutual adaptation. Our findings thus provide a potential bridge between influential theories attempting to explain interpersonal coordination, and a concrete connection to its neurophysiological bases.


Assuntos
Eletroencefalografia , Movimento , Encéfalo/fisiologia , Mapeamento Encefálico , Humanos , Movimento/fisiologia
4.
Nat Rev Neurosci ; 23(5): 287-305, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35352057

RESUMO

Music is ubiquitous across human cultures - as a source of affective and pleasurable experience, moving us both physically and emotionally - and learning to play music shapes both brain structure and brain function. Music processing in the brain - namely, the perception of melody, harmony and rhythm - has traditionally been studied as an auditory phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions about what is likely to happen next. This enactive aspect has led to a more comprehensive understanding of music processing involving brain structures implicated in action, emotion and learning. Here we review the cognitive neuroscience literature of music perception. We show that music perception, action, emotion and learning all rest on the human brain's fundamental capacity for prediction - as formulated by the predictive coding of music model. This Review elucidates how this formulation of music perception and expertise in individuals can be extended to account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important implications for human creativity as evinced by music improvisation. These recent advances shed new light on what makes music meaningful from a neuroscientific perspective.


Assuntos
Música , Percepção Auditiva , Encéfalo , Emoções , Humanos , Aprendizagem , Música/psicologia
5.
Sci Rep ; 9(1): 11048, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363106

RESUMO

Musical interaction is a unique model for understanding humans' ability to align goals, intentions, and actions, which also allows for the manipulation of participants' internal predictive models of upcoming events. Here we used polyrhythms to construct two joint finger tapping tasks that even when rhythmically dissimilar resulted in equal inter-tap intervals (ITIs). Thus, behaviourally a dyad of two musicians tap isochronously at the same rate, yet with their own distinct rhythmical context model (RCM). We recruited 22 highly skilled musicians (in 11 dyads) and contrasted the effect of having a shared versus non-shared RCM on dyads' synchronization behaviour. As expected, tapping synchronization was significantly worse at the start of trials with non-shared models compared to trials with a shared model. However, the musicians were able to quickly recover when holding dissimilar predictive models. We characterised the directionality in the tapping behaviour of the dyads and found patterns mostly of mutual adaptation. Yet, in a subset of dyads primarily consisting of drummers, we found significantly different synchronization patterns, suggesting that instrument expertise can significantly affect synchronization strategies. Overall, this demonstrates that holding different predictive models impacts synchronization in musicians performing joint finger tapping.


Assuntos
Relações Interpessoais , Música/psicologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Periodicidade , Adulto Jovem
6.
PLoS One ; 14(1): e0204539, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629596

RESUMO

The pleasurable desire to move to music, also known as groove, is modulated by rhythmic complexity. How the sensation of groove is influenced by other musical features, such as the harmonic complexity of individual chords, is less clear. To address this, we asked people with a range of musical experience to rate stimuli that varied in both rhythmic and harmonic complexity. Rhythm showed an inverted U-shaped relationship with ratings of pleasure and wanting to move, whereas medium and low complexity chords were rated similarly. Pleasure mediated the effect of harmony on wanting to move and high complexity chords attenuated the effect of rhythm on pleasure. We suggest that while rhythmic complexity is the primary driver, harmony, by altering emotional valence, modulates the attentional and temporal prediction processes that underlie rhythm perception. Investigation of the effects of musical training with both regression and group comparison showed that training increased the inverted U effect for harmony and rhythm, respectively. Taken together, this work provides important new information about how the prediction and entrainment processes involved in rhythm perception interact with musical pleasure.


Assuntos
Percepção Auditiva/fisiologia , Música/psicologia , Prazer/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...