Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 38(3): 17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25788436

RESUMO

We used a direct imaging technique to investigate concentration fluctuations enhanced by thermal fluctuations in a ternary mixture of methanol (Me), cyclohexane (C), and partially deuterated cyclohexane (C*) within 1mK above its consolute critical point. The experimental setup used a low-coherence white-light source and a red filter to visualize fluctuation images. The red-filtered images were analyzed off-line using a differential dynamic microscopy algorithm that allowed us to determine the correlation time, τ, of concentration fluctuations. From τ, we determined the mutual mass diffusion coefficient, D, very near and above the critical point of Me-CC* mixtures. We also numerically estimated both the background and critical contributions to D and compared the results against our experimental values determined from τ. We found that the experimental value of D is close to the prediction based on Stokes-Einstein diffusion law with Kawasaki's correction.

2.
Eur Phys J E Soft Matter ; 37(9): 41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25260326

RESUMO

Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25215709

RESUMO

We use optical microscopy techniques to directly visualize the structures that emerge in binary mixtures and pure fluids near their respective critical points. We attempt to understand these structures by studying the image formation using both a phase contrast and a dark field filter to our microscope. We found that images of critical fluctuations for both liquid-liquid and liquid-gas critical systems have gray level intensity histograms with Gaussian shape. For all fluids investigated, the temperature-dependent standard deviation of the Gaussian histogram follows a power law with the same exponent. Since the image intensity fluctuations are determined by order parameter fluctuations, this direct imaging method allowed us to estimate the critical exponent of compressibility with very good accuracy.


Assuntos
Isobutiratos , Microscopia de Contraste de Fase/métodos , Imagem Óptica/métodos , Água , Gases , Temperatura de Transição
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061501, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367952

RESUMO

Large density fluctuations were observed by illuminating a cylindrical cell filled with sulfur hexafluoride (SF(6)), very near its liquid-gas critical point (|T-T(c)|< 300 µK) and recorded using a microscope with 3 µm spatial resolution. Using a dynamic structure factor algorithm, we determined from the recorded images the structure factor (SF), which measures the spatial distribution of fluctuations at different moments, and the correlation time of fluctuations. This method authorizes local measurements in contrast to the classical scattering techniques that average fluctuations over the illuminating beam. We found that during the very early stages of phase separation the SF scales with the wave vector q according to the Lorentzian q(-2), which shows that the liquid and vapor domains are just emerging. The critical wave number, which is related to the characteristic length of fluctuations, steadily decreases over time, supporting a sustained increase in the spatial scale of the fluctuating domains. The scaled evolution of the critical wave number obeys the universal evolution for the interconnected domains at high volume fraction with an apparent power law exponent of -0.35 ± 0.02. We also determined the correlation time of the fluctuations and inferred values for thermal diffusivity coefficient very near the critical point, above and below. The values were used to pinpoint the crossing of T(c) within 13 µK.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021202, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928983

RESUMO

Near the liquid-vapor critical point in pure fluids, material and thermal properties vary considerably with temperature. In a series of microgravity experiments, sulfur hexafluoride (SF6) was heated ∼1 K above its critical temperature, then quenched below the critical temperature in order to form gas and liquid domains. We found a power law exponent of 0.389 ± 0.010 for the growth of the wetting layer thickness during the intermediate stage of phase separation. Full and microscopic view images of the sample cell unit were analyzed to determine the changes in the size distribution of liquid droplets inside the gas phase over time. We found that the distribution of diameters for liquid droplets always contains a fraction of very small droplets, presumably due to a continuous nucleation process. At the same time, the size distribution flattens over time and rapidly includes large-size droplets, presumably generated through a coalescence mechanism. By following both a large gas bubble over two hours of video recordings, we found periodic and synchronous motion of the gas bubble along both the x and y directions. By following a large liquid droplet embedded into the large gas bubble, we found periodic, out of phase motions, which we related to Marangoni convection. The experimentally measured velocity of the liquid droplet is in good agreement with the theoretical predicted velocity of ∼0.386 µm/s obtained from Young's thermocapillary effect.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 1): 051118, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643037

RESUMO

We present both the experimental and computational methods and results of phase-separating experiments performed with sulfur hexafluoride (SF6) close to its critical density. These experiments were performed in microgravity to suppress buoyancy and convection-driven effects. Phase separation under reduced gravity is analyzed for both 0.3 mK and 3.6 mK temperature quenches in order to derive the early-stage growth law. We found a 1/3 growth law for early stages of phase separation for a volume fraction of minority domains of 50%. Our findings support the hypothesis of a crossover between Brownian motion and hydrodynamic effects in the early stages of phase separation. The temperature inside the bulk of the pure fluid was estimated using a proposed histogram method. Our histogram method allowed temperature estimation below thermistors' sensitivity and detected small temperature variations inside the bulk of the pure fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...