Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005466

RESUMO

More and more people quantify their sleep using wearables and are becoming obsessed in their pursuit of optimal sleep ("orthosomnia"). However, it is criticized that many of these wearables are giving inaccurate feedback and can even lead to negative daytime consequences. Acknowledging these facts, we here optimize our previously suggested sleep classification procedure in a new sample of 136 self-reported poor sleepers to minimize erroneous classification during ambulatory sleep sensing. Firstly, we introduce an advanced interbeat-interval (IBI) quality control using a random forest method to account for wearable recordings in naturalistic and more noisy settings. We further aim to improve sleep classification by opting for a loss function model instead of the overall epoch-by-epoch accuracy to avoid model biases towards the majority class (i.e., "light sleep"). Using these implementations, we compare the classification performance between the optimized (loss function model) and the accuracy model. We use signals derived from PSG, one-channel ECG, and two consumer wearables: the ECG breast belt Polar® H10 (H10) and the Polar® Verity Sense (VS), an optical Photoplethysmography (PPG) heart-rate sensor. The results reveal a high overall accuracy for the loss function in ECG (86.3 %, κ = 0.79), as well as the H10 (84.4%, κ = 0.76), and VS (84.2%, κ = 0.75) sensors, with improvements in deep sleep and wake. In addition, the new optimized model displays moderate to high correlations and agreement with PSG on primary sleep parameters, while measures of reliability, expressed in intra-class correlations, suggest excellent reliability for most sleep parameters. Finally, it is demonstrated that the new model is still classifying sleep accurately in 4-classes in users taking heart-affecting and/or psychoactive medication, which can be considered a prerequisite in older individuals with or without common disorders. Further improving and validating automatic sleep stage classification algorithms based on signals from affordable wearables may resolve existing scepticism and open the door for such approaches in clinical practice.


Assuntos
Fases do Sono , Sono , Humanos , Idoso , Reprodutibilidade dos Testes , Algoritmos , Frequência Cardíaca
2.
Life (Basel) ; 13(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37629536

RESUMO

Due to the high demands of competitive sports, the sleep architecture of adolescent athletes may be influenced by their regular training. To date, there is no clear evidence on how training characteristics (intensity, time of day, number of sessions) influence sleep quality and quantity. 53 male soccer players (M = 14.36 years, SD = 0.55) of Austrian U15 (n = 45) and U16 elite teams (n = 8) were tested on at least three consecutive days following their habitual training schedules. Participants completed daily sleep protocols (7 a.m., 8 p.m.) and questionnaires assessing sleep quality (PSQI), chronotype (D-MEQ), competition anxiety (WAI-T), and stress/recovery (RESTQ). Electrocardiography (ECG) and actigraphy devices measured sleep. Using sleep protocols and an ECG-based multi-resolution convolutional neural network (MCNN), we found that higher training intensity leads to more wake time, that later training causes longer sleep duration, and that one training session per day was most advantageous for sleep quality. In addition, somatic complaints assessed by the WAI-T negatively affected adolescent athletes' sleep. Individual training loads and longer recovery times after late training sessions during the day should be considered in training schedules, especially for adolescent athletes. MCNN modeling based on ECG data seems promising for efficient sleep analysis in athletes.

3.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904595

RESUMO

Sleep staging based on polysomnography (PSG) performed by human experts is the de facto "gold standard" for the objective measurement of sleep. PSG and manual sleep staging is, however, personnel-intensive and time-consuming and it is thus impractical to monitor a person's sleep architecture over extended periods. Here, we present a novel, low-cost, automatized, deep learning alternative to PSG sleep staging that provides a reliable epoch-by-epoch four-class sleep staging approach (Wake, Light [N1 + N2], Deep, REM) based solely on inter-beat-interval (IBI) data. Having trained a multi-resolution convolutional neural network (MCNN) on the IBIs of 8898 full-night manually sleep-staged recordings, we tested the MCNN on sleep classification using the IBIs of two low-cost (

Assuntos
Sono , Dispositivos Eletrônicos Vestíveis , Humanos , Frequência Cardíaca , Reprodutibilidade dos Testes , Fases do Sono/fisiologia
4.
Neuroimage ; 264: 119690, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261058

RESUMO

The 'day residue' - the presence of waking memories into dreams - is a century-old concept that remains controversial in neuroscience. Even at the psychological level, it remains unclear how waking imagery cedes into dreams. Are visual and affective residues enhanced, modified, or erased at sleep onset? Are they linked, or dissociated? What are the neural correlates of these transformations? To address these questions we combined quantitative semantics, sleep EEG markers, visual stimulation, and multiple awakenings to investigate visual and affect residues in hypnagogic imagery at sleep onset. Healthy adults were repeatedly stimulated with an affective image, allowed to sleep and awoken seconds to minutes later, during waking (WK), N1 or N2 sleep stages. 'Image Residue' was objectively defined as the formal semantic similarity between oral reports describing the last image visualized before closing the eyes ('ground image'), and oral reports of subsequent visual imagery ('hypnagogic imagery). Similarly, 'Affect Residue' measured the proximity of affective valences between 'ground image' and 'hypnagogic imagery'. We then compared these grounded measures of two distinct aspects of the 'day residue', calculated within participants, to randomly generated values calculated across participants. The results show that Image Residue persisted throughout the transition to sleep, increasing during N1 in proportion to the time spent in this stage. In contrast, the Affect Residue was gradually neutralized as sleep progressed, decreasing in proportion to the time spent in N1 and reaching a minimum during N2. EEG power in the theta band (4.5-6.5 Hz) was inversely correlated with the Image Residue during N1. The results show that the visual and affective aspects of the 'day residue' in hypnagogic imagery diverge at sleep onset, possibly decoupling visual contents from strong negative emotions, in association with increased theta rhythm.


Assuntos
Fases do Sono , Sono , Adulto , Humanos , Fases do Sono/fisiologia , Vigília/fisiologia , Ritmo Teta , Eletroencefalografia
5.
Elife ; 112022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35188457

RESUMO

Previously, we demonstrated that precise temporal coordination between slow oscillations (SOs) and sleep spindles indexes declarative memory network development (Hahn et al., 2020). However, it is unclear whether these findings in the declarative memory domain also apply in the motor memory domain. Here, we compared adolescents and adults learning juggling, a real-life gross-motor task. Juggling performance was impacted by sleep and time of day effects. Critically, we found that improved task proficiency after sleep lead to an attenuation of the learning curve, suggesting a dynamic juggling learning process. We employed individualized cross-frequency coupling analyses to reduce inter- and intragroup variability of oscillatory features. Advancing our previous findings, we identified a more precise SO-spindle coupling in adults compared to adolescents. Importantly, coupling precision over motor areas predicted overnight changes in task proficiency and learning curve, indicating that SO-spindle coupling relates to the dynamic motor learning process. Our results provide first evidence that regionally specific, precisely coupled sleep oscillations support gross-motor learning.


Assuntos
Aprendizagem , Destreza Motora , Sono/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Polissonografia
6.
J Neurosci ; 42(9): 1791-1803, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35039445

RESUMO

The brain continues to respond selectively to environmental stimuli during sleep. However, the functional role of such responses, and whether they reflect information processing or rather sensory inhibition, is not fully understood. Here, we present 17 human sleepers (14 females) with their own name and two unfamiliar first names, spoken by either a familiar voice (FV) or an unfamiliar voice (UFV), while recording polysomnography during a full night of sleep. We detect K-complexes, sleep spindles, and microarousals, and assess event-related and frequency responses as well as intertrial phase synchronization to the different stimuli presented during nonrapid eye movement (NREM) sleep. We show that UFVs evoke more K-complexes and microarousals than FVs. When both stimuli evoke a K-complex, we observe larger evoked potentials, more precise time-locking of brain responses in the delta band (1-4 Hz), and stronger activity in the high frequency (>16 Hz) range, in response to UFVs relative to FVs. Crucially, these differences in brain responses disappear completely when no K-complexes are evoked by the auditory stimuli. Our findings highlight discrepancies in brain responses to auditory stimuli based on their relevance to the sleeper and propose a key role for K-complexes in the modulation of sensory processing during sleep. We argue that such content-specific, dynamic reactivity to external sensory information enables the brain to enter a sentinel processing mode in which it engages in the important internal processes that are ongoing during sleep while still maintaining the ability to process vital external sensory information.SIGNIFICANCE STATEMENT Previous research has shown that sensory processing continues during sleep. Here, we studied the capacity of the sleeping brain to extract and process relevant sensory information. We presented sleepers with their own names and unfamiliar names spoken by either an FV or a UFV. During NREM sleep, UFVs elicited more K-complexes and microarousals than FVs. By contrasting stimuli that evoked K-complexes, we demonstrate that UFVs evoked larger, more synchronized brain responses as well as stronger power at high frequencies (>16 Hz) relative to FVs. These differences in brain responses disappeared when no K-complexes were evoked. Our results suggest a pivotal role for K-complexes in the selective processing of relevant information during NREM sleep.


Assuntos
Eletroencefalografia , Voz , Estimulação Acústica/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Polissonografia , Sono/fisiologia , Fases do Sono/fisiologia
7.
Elife ; 92020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32579108

RESUMO

Precise temporal coordination of slow oscillations (SO) and sleep spindles is a fundamental mechanism of sleep-dependent memory consolidation. SO and spindle morphology changes considerably throughout development. Critically, it remains unknown how the precise temporal coordination of these two sleep oscillations develops during brain maturation and whether their synchronization indexes the development of memory networks. Here, we use a longitudinal study design spanning from childhood to adolescence, where participants underwent polysomnography and performed a declarative word-pair learning task. Performance on the memory task was better during adolescence. After disentangling oscillatory components from 1/f activity, we found frequency shifts within SO and spindle frequency bands. Consequently, we devised an individualized cross-frequency coupling approach, which demonstrates that SO-spindle coupling strength increases during maturation. Critically, this increase indicated enhanced memory formation from childhood to adolescence. Our results provide evidence that improved coordination between SOs and spindles indexes the development of sleep-dependent memory networks.


Sleep is essential for consolidating the memories that we made during the day. As we lie asleep, unconscious, our brain is busy processing the day's memories, which travel through three parts of the brain before they are filed away. First, the hippocampus, the part of the brain that stores memories temporarily, replays the memories of the day. Then the reactivated memories pass through the thalamus, a central crossroads in the brain, so they can be embedded in the neocortex for long-term storage. Neuroscientists can eavesdrop on the brain at work, day or night, using a technique called EEG. Short for electroencephalogram, an EEG detects brain waves like the bursts of electrical activity known as sleep spindles and slower sleep waves called slow oscillations. These two brain wave patterns represent how the brain processes memories as people sleep ­ and it is all about timing. If the two patterns are running in sync, then the brain's memory systems are thought to be communicating well and memories are more likely to be stored. But patterns of sleep spindles and slow oscillations change dramatically between childhood and adolescence. Memory consolidation also improves in those formative years. Still, it is not yet known if better synchronization between sleep spindles and slow oscillations explains how memory formation improves during this period; that is the going theory. To test it out, Hahn et al. completed a unique study examining how well a group of 33 children could store memories, and then again when the same group were teenagers. Both times, the group was asked to memorise and then recall a set of words before and after a full night's sleep. Hahn et al. measured how much their memory recall improved and whether their brain wave patterns were in sync, looking for any changes between childhood and adolescence. This showed that children whose sleep spindles stacked better with their slow oscillations had improved memory formation once they became teenagers. This work highlights how communication between memory systems in the brain improves as children age, and so does memory. Moreover, it suggests that if disturbances were to be detected in patterns of sleep spindles and slow oscillations, there might be some problem with memory storage. It also points to brain stimulation as a possible treatment option for such problems in the future.


Assuntos
Encéfalo/fisiologia , Consolidação da Memória/fisiologia , Sono/fisiologia , Adolescente , Envelhecimento , Algoritmos , Criança , Eletroencefalografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Polissonografia , Software
8.
Sleep Breath ; 24(2): 735-741, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31838623

RESUMO

During the past years, the prevalence of sleep problems has been increasing steadily in industrial societies and represents a major social and socioeconomic burden. The situation in Austria was last evaluated in 2007 by Zeitlhofer and colleagues in a representative sample of 1000 participants. In the current study, we sought to evaluate the sleep behaviour of the Austrian population in an ongoing online survey, in which we have collected data from 986 participants (66% women, mean age 40.9 ± 16.4 years) between March 2018 and May 2019. Sleep duration was appropriate in 52% of the respondents (i.e. 7-9 h per night). However, we found an alarmingly high number of self-reported sleep problems (46%), and only 31% of the participants classified themselves as "good sleepers" using a validated self-report questionnaire (Pittsburgh Sleep Quality Index, PSQI). Furthermore, many participants reported suffering from sleep problems for a very long time (86% > 6 months; 37% > 5 years) suggesting that currently available treatment options are either ineffective or not employed. Possible reasons for sleep problems could include irregular sleep-wake cycles, increased perceived stress levels, and the use of electronic devices just before sleep.


Assuntos
Transtornos do Sono-Vigília/epidemiologia , Sono , Adulto , Idoso , Áustria , Comparação Transcultural , Estudos Transversais , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas On-Line , Autorrelato/estatística & dados numéricos , Transtornos do Sono-Vigília/diagnóstico
9.
J Sleep Res ; 28(1): e12649, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29271015

RESUMO

Many studies investigating sleep and memory consolidation have evaluated full-night sleep rather than alternative sleep periods such as daytime naps. This multi-centre study followed up on, and was compared with, an earlier full-night study (Schabus et al., 2004) investigating the relevance of daytime naps for the consolidation of declarative and procedural memory. Seventy-six participants were randomly assigned to a nap or wake group, and performed a declarative word-pair association or procedural mirror-tracing task. Performance changes from before to after a 90-min retention interval filled with sleep or quiet wakefulness were evaluated between groups. Associations between performance changes, sleep architecture, spindles, and slow oscillations were investigated. For the declarative task we observed a trend towards stronger forgetting across a wake period compared with a nap period, and a trend towards memory increase over the full-night. For the procedural task, accuracy was significantly decreased following daytime wakefulness, showed a trend to increase with a daytime nap, and significantly increased across full-night sleep. For the nap protocol, neither sleep stages, spindles, nor slow oscillations predicted performance changes. A direct comparison of day and nighttime sleep revealed that daytime naps are characterized by significantly lower spindle density, but higher spindle activity and amplitude compared with full-night sleep. In summary, data indicate that daytime naps protect procedural memories from deterioration, whereas full-night sleep improves performance. Given behavioural and physiological differences between day and nighttime sleep, future studies should try to characterize potential differential effects of full-night and daytime sleep with regard to sleep-dependent memory consolidation.


Assuntos
Polissonografia/métodos , Sono/fisiologia , Vigília/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
10.
J Exp Psychol Learn Mem Cogn ; 45(2): 272-287, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29698042

RESUMO

Retrieval practice relative to restudy of learned material typically attenuates time-dependent forgetting. A recent study examining this testing effect across 12-h delays filled with nocturnal sleep versus daytime wakefulness, however, showed that sleep directly following encoding benefited recall of restudied but not of retrieval practiced items, which reduced, and even eliminated, the testing effect after sleep (Bäuml, Holterman, & Abel, 2014). The present study investigated, in 4 experiments, whether this modulating role of sleep for the testing effect is influenced by two factors that have previously been shown to increase the testing effect: corrective feedback and prolonged retention intervals. Experiments 1a and 1b applied 12-h delays and showed benefits of sleep for recall after both restudy and retrieval practice with feedback, but not after retrieval practice without feedback. Experiments 2a and 2b applied 24-h or 7-day delays and failed to observe any long-lasting benefits of sleep directly after encoding, on both restudied and retrieval practiced items. These results indicate that both corrective feedback and prolonged retention intervals reduce the modulating role of sleep for the testing effect as it can be observed after 12-h delays and in the absence of corrective feedback, which suggests a fairly limited influence of sleep on the effect. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Retroalimentação Psicológica/fisiologia , Rememoração Mental/fisiologia , Prática Psicológica , Retenção Psicológica/fisiologia , Sono/fisiologia , Adolescente , Adulto , Aprendizagem por Associação , Sinais (Psicologia) , Feminino , Humanos , Masculino , Semântica , Fatores de Tempo , Vigília , Adulto Jovem
11.
Dev Sci ; 22(1): e12706, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252185

RESUMO

Sleep spindles are related to sleep-dependent memory consolidation and general cognitive abilities. However, they undergo drastic maturational changes during adolescence. Here we used a longitudinal approach (across 7 years) to explore whether developmental changes in sleep spindle density can explain individual differences in sleep-dependent memory consolidation and general cognitive abilities. Ambulatory polysomnography was recorded during four nights in 34 healthy subjects (24 female) with two nights (baseline and experimental) at initial recording (age range 8-11 years) and two nights at follow-up recording (age range 14-18 years). For declarative learning, participants encoded word pairs with a subsequent recall before and after sleep. General cognitive abilities were measured by the Wechsler Intelligence Scale. Higher slow (11-13 Hz) than fast (13-15 Hz) spindle density at frontal, central, and parietal sites during initial recordings, followed by a shift to higher fast than slow spindle density at central and parietal sites during follow-up recordings, suggest that mature spindle topography develops throughout adolescence. Fast spindle density increases from baseline to experimental night were positively related to sleep-dependent memory consolidation. In addition, we found that the development of fast spindles predicted the improvement in memory consolidation across the two longitudinal measurements, a finding that underlines a crucial role for mature fast spindles for sleep-dependent memory consolidation. Furthermore, slow spindle changes across adolescence were related to general cognitive abilities, a relationship that could indicate the maturation of frontal networks relevant for efficient cognitive processing. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=7NXJzm8HbIw and https://www.youtube.com/watch?v=iuMQY1OIJ0s.


Assuntos
Cognição , Consolidação da Memória/fisiologia , Sono/fisiologia , Adolescente , Adulto , Criança , Eletroencefalografia , Feminino , Humanos , Individualidade , Aprendizagem , Estudos Longitudinais , Masculino , Rememoração Mental , Polissonografia/métodos , Adulto Jovem
12.
Neuroimage ; 178: 638-648, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859261

RESUMO

While it is a well-established finding that subjects' own names (SON) and familiar voices are salient during wakefulness, we here investigated processing of environmental stimuli during sleep including deep N3 and REM sleep. Besides the effects of sleep depth we investigated how sleep-specific EEG patterns (i.e. sleep spindles and slow oscillations [SOs]) relate to stimulus processing. Using 256-channel EEG we studied processing of auditory stimuli by means of event-related oscillatory responses (de-/synchronisation, ERD/ERS) and potentials (ERPs) in N = 17 healthy sleepers. We varied stimulus salience by manipulating subjective (SON vs. unfamiliar name) and paralinguistic emotional relevance (familiar vs. unfamiliar voice, FV/UFV). Results reveal that evaluation of voice familiarity continues during all NREM sleep stages and even REM sleep suggesting a 'sentinel processing mode' of the human brain in the absence of wake-like consciousness. Especially UFV stimuli elicit larger responses in a 1-15 Hz range suggesting they continue being salient. Beyond this, we find that sleep spindles and the negative slope of SOs attenuate information processing. However, unlike previously suggested they do not uniformly inhibit information processing, but inhibition seems to be scaled to stimulus salience.


Assuntos
Percepção Auditiva/fisiologia , Estado de Consciência/fisiologia , Reconhecimento Psicológico/fisiologia , Sono/fisiologia , Estimulação Acústica , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
13.
PLoS One ; 13(1): e0190458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293607

RESUMO

Sleep has been proposed to indicate preserved residual brain functioning in patients suffering from disorders of consciousness (DOC) after awakening from coma. However, a reliable characterization of sleep patterns in this clinical population continues to be challenging given severely altered brain oscillations, frequent and extended artifacts in clinical recordings and the absence of established staging criteria. In the present study, we try to address these issues and investigate the usefulness of a multivariate machine learning technique based on permutation entropy, a complexity measure. Specifically, we used long-term polysomnography (PSG), along with video recordings in day and night periods in a sample of 23 DOC; 12 patients were diagnosed as Unresponsive Wakefulness Syndrome (UWS) and 11 were diagnosed as Minimally Conscious State (MCS). Eight hour PSG recordings of healthy sleepers (N = 26) were additionally used for training and setting parameters of supervised and unsupervised model, respectively. In DOC, the supervised classification (wake, N1, N2, N3 or REM) was validated using simultaneous videos which identified periods with prolonged eye opening or eye closure.The supervised classification revealed that out of the 23 subjects, 11 patients (5 MCS and 6 UWS) yielded highly accurate classification with an average F1-score of 0.87 representing high overlap between the classifier predicting sleep (i.e. one of the 4 sleep stages) and closed eyes. Furthermore, the unsupervised approach revealed a more complex pattern of sleep-wake stages during the night period in the MCS group, as evidenced by the presence of several distinct clusters. In contrast, in UWS patients no such clustering was found. Altogether, we present a novel data-driven method, based on machine learning that can be used to gain new and unambiguous insights into sleep organization and residual brain functioning of patients with DOC.


Assuntos
Transtornos da Consciência/fisiopatologia , Aprendizado de Máquina , Sono , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Sci Rep ; 7(1): 266, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325926

RESUMO

Brain injuries substantially change the entire landscape of oscillatory dynamics and render detection of typical sleep patterns difficult. Yet, sleep is characterized not only by specific EEG waveforms, but also by its circadian organization. In the present study we investigated whether brain dynamics of patients with disorders of consciousness systematically change between day and night. We recorded ~24 h EEG at the bedside of 18 patients diagnosed to be vigilant but unaware (Unresponsive Wakefulness Syndrome) and 17 patients revealing signs of fluctuating consciousness (Minimally Conscious State). The day-to-night changes in (i) spectral power, (ii) sleep-specific oscillatory patterns and (iii) signal complexity were analyzed and compared to 26 healthy control subjects. Surprisingly, the prevalence of sleep spindles and slow waves did not systematically vary between day and night in patients, whereas day-night changes in EEG power spectra and signal complexity were revealed in minimally conscious but not unaware patients.


Assuntos
Ritmo Circadiano , Transtornos da Consciência/complicações , Sono , Vigília , Eletroencefalografia , Humanos
15.
Brain ; 140(4): 1041-1052, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335000

RESUMO

See Thibault et al. (doi:10.1093/awx033) for a scientific commentary on this article.Neurofeedback training builds upon the simple concept of instrumental conditioning, i.e. behaviour that is rewarded is more likely to reoccur, an effect Thorndike referred to as the 'law of effect'. In the case of neurofeedback, information about specific electroencephalographic activity is fed back to the participant who is rewarded whenever the desired electroencephalography pattern is generated. If some kind of hyperarousal needs to be addressed, the neurofeedback community considers sensorimotor rhythm neurofeedback as the gold standard. Earlier treatment approaches using sensorimotor-rhythm neurofeedback indicated that training to increase 12-15 Hz sensorimotor rhythm over the sensorimotor cortex during wakefulness could reduce attention-deficit/hyperactivity disorder and epilepsy symptoms and even improve sleep quality by enhancing sleep spindle activity (lying in the same frequency range). In the present study we sought to critically test whether earlier findings on the positive effect of sensorimotor rhythm neurofeedback on sleep quality and memory could also be replicated in a double-blind placebo-controlled study on 25 patients with insomnia. Patients spent nine polysomnography nights and 12 sessions of neurofeedback and 12 sessions of placebo-feedback training (sham) in our laboratory. Crucially, we found both neurofeedback and placebo feedback to be equally effective as reflected in subjective measures of sleep complaints suggesting that the observed improvements were due to unspecific factors such as experiencing trust and receiving care and empathy from experimenters. In addition, these improvements were not reflected in objective electroencephalographic-derived measures of sleep quality. Furthermore, objective electroencephalographic measures that potentially reflected mechanisms underlying the efficacy of neurofeedback such as spectral electroencephalographic measures and sleep spindle parameters remained unchanged following 12 training sessions. A stratification into 'true' insomnia patients and 'insomnia misperceivers' (subjective, but no objective sleep problems) did not alter the results. Based on this comprehensive and well-controlled study, we conclude that for the treatment of primary insomnia, neurofeedback does not have a specific efficacy beyond unspecific placebo effects. Importantly, we do not find an advantage of neurofeedback over placebo feedback, therefore it cannot be recommended as an alternative to cognitive behavioural therapy for insomnia, the current (non-pharmacological) standard-of-care treatment. In addition, our study may foster a critical discussion that generally questions the effectiveness of neurofeedback, and emphasizes the importance of demonstrating neurofeedback efficacy in other study samples and disorders using truly placebo and double-blind controlled trials.


Assuntos
Neurorretroalimentação , Projetos de Pesquisa , Distúrbios do Início e da Manutenção do Sono/terapia , Adulto , Método Duplo-Cego , Eletroencefalografia , Feminino , Humanos , Masculino , Efeito Placebo , Polissonografia , Qualidade de Vida , Sono , Distúrbios do Início e da Manutenção do Sono/psicologia , Resultado do Tratamento , Vigília
16.
Brain Lang ; 167: 72-82, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27039169

RESUMO

Information processing has been suggested to depend on the current state of the brain as well as stimulus characteristics (e.g. salience). We compared processing of salient stimuli (subject's own names [SONs] and angry voice [AV] stimuli) to processing of unfamiliar names (UNs) and neutral voice (NV) stimuli across different vigilance stages (i.e. wakefulness as well as sleep stages N1 and N2) by means of event-related oscillatory responses during wakefulness and a subsequent afternoon nap. Our findings suggest that emotional prosody and self-relevance drew more attentional resources during wakefulness with specifically AV stimuli being processed more strongly. During N1, SONs were more arousing than UNs irrespective of prosody. Moreover, emotional and self-relevant stimuli evoked stronger responses also during N2 sleep suggesting a 'sentinel processing mode' of the brain during this state of naturally occurring unconsciousness. Finally, this initial preferential processing of salient stimuli during N2 sleep seems to be followed by an inhibitory sleep-protecting process, which is reflected by a K-complex-like response.


Assuntos
Estimulação Acústica/métodos , Emoções/fisiologia , Potenciais Evocados/fisiologia , Sono/fisiologia , Inconsciente Psicológico , Adulto , Ira , Atenção/fisiologia , Encéfalo/fisiologia , Ondas Encefálicas/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Nomes , Vigília/fisiologia , Adulto Jovem
17.
PLoS One ; 11(7): e0159429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442445

RESUMO

Emotionally relevant stimuli and in particular anger are, due to their evolutionary relevance, often processed automatically and able to modulate attention independent of conscious access. Here, we tested whether attention allocation is enhanced when auditory stimuli are uttered by an angry voice. We recorded EEG and presented healthy individuals with a passive condition where unfamiliar names as well as the subject's own name were spoken both with an angry and neutral prosody. The active condition instead, required participants to actively count one of the presented (angry) names. Results revealed that in the passive condition the angry prosody only elicited slightly stronger delta synchronization as compared to a neutral voice. In the active condition the attended (angry) target was related to enhanced delta/theta synchronization as well as alpha desynchronization suggesting enhanced allocation of attention and utilization of working memory resources. Altogether, the current results are in line with previous findings and highlight that attention orientation can be systematically related to specific oscillatory brain responses. Potential applications include assessment of non-communicative clinical groups such as post-comatose patients.


Assuntos
Ira/fisiologia , Eletroencefalografia/métodos , Voz/fisiologia , Adulto , Ondas Encefálicas/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Conscious Cogn ; 44: 51-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27351782

RESUMO

Emotional and self-relevant stimuli are able to automatically attract attention and their use in patients suffering from disorders of consciousness (DOC) might help detecting otherwise hidden signs of cognition. We here recorded EEG in three Locked-in syndrome (LIS) and four Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) patients while they listened to the voice of a family member or an unfamiliar voice during a passive. Data indicate that, in a passive listening condition, the familiar voice induces stronger alpha desynchronization than the unfamiliar one. In an active condition, the target evoked stronger alpha desynchronization in controls, two LIS patients and one VS/UWS patient. Results suggest that self-relevant familiar voice stimuli can engage additional attentional resources and might allow the detection of otherwise hidden signs of instruction-following and thus residual awareness. Further studies are necessary to find sensitive paradigms that are suited to find subtle signs of cognition and awareness in DOC patients.


Assuntos
Estimulação Acústica/métodos , Atenção/fisiologia , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Eletroencefalografia , Reconhecimento Psicológico/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino
19.
Psychophysiology ; 52(11): 1441-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26268858

RESUMO

Based on physiological models of neurovisceral integration, different studies have shown how cognitive processes modulate heart rate and how the heartbeat, on the other hand, modulates brain activity. We tried to further determine interactions between cardiac and electrical brain activity by means of EEG. We investigated how the heartbeat modulates EEG in 23 healthy controls from wakefulness to deep sleep and showed that frontocentral heartbeat evoked EEG amplitude and phase locking (as measured by intertrial phase locking), at about 300-400 ms after the R peak, decreased with increasing sleep depth with a renewed increase during REM sleep, which underpins the assumption that the heartbeat evoked positivity constitutes an active frontocortical response to the heartbeat. Additionally, we found that individual heart rate was correlated with the frequency of the EEG's spectral peak (i.e., alpha peak frequency during wakefulness). This correlation was strongest during wakefulness and declined linearly with increasing sleep depth. Furthermore, we show that the QRS complex modulates spindle phase possibly related to the correspondence between the frequency of the QRS complex and the spindle frequency of about 12-15 Hz. Finally, during deep sleep stages, a loose temporal coupling between heartbeats and slow oscillation (0.8 Hz) could be observed. These findings indicate that cardiac activity such as heart rate or individual heartbeats can modulate or be modulated by ongoing oscillatory brain activity.


Assuntos
Encéfalo/fisiologia , Frequência Cardíaca/fisiologia , Sono/fisiologia , Vigília/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Polissonografia , Fases do Sono/fisiologia
20.
Neuropsychologia ; 75: 330-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26111488

RESUMO

The ability to attribute independent mental states (e.g. opinions, perceptions, beliefs) to oneself and others is termed Theory of Mind (ToM). Previous studies investigating ToM usually employed verbal paradigms and functional neuroimaging methods. Here, we studied oscillatory responses in the electroencephalogram (EEG) in a non-verbal social cognition task. The aim of this study was twofold: First, we wanted to investigate differences in oscillatory responses to animations differing with regard to the complexity of social "interactions". Secondly, we intended to evaluate the basic cognitive processes underlying social cognition. To this end, we analyzed theta, alpha, beta and gamma task-related de-/synchronization (TRD/TRS) during presentation of six non-verbal videos differing in the complexity of (social) "interactions" between two geometric shapes. Videos were adopted from Castelli et al. (2000)and belonged to three conditions: Videos designed to evoke attributions of mental states (ToM), interaction descriptions (goal-directed, GD) and videos in which the shapes moved randomly (R). Analyses revealed that only theta activity consistently varied as a function of social "interaction" complexity. Results suggest that ToM/GD videos attract more attention and working-memory resources and may have activated related memory contents. Alpha and beta results were less consistent. While alpha effects suggest that observation of social "interactions" may benefit from inhibition of self-centered processing, oscillatory responses in the beta range could be related to action observation. In summary, the results provide insight into basic cognitive processes involved in social cognition and render the paradigm attractive for the investigation of social cognitive processes in non-verbal populations.


Assuntos
Ondas Encefálicas , Cognição/fisiologia , Relações Interpessoais , Teoria da Mente/fisiologia , Adulto , Ritmo alfa , Ritmo beta , Sincronização Cortical , Eletroencefalografia , Potenciais Evocados Visuais , Feminino , Ritmo Gama , Humanos , Masculino , Conceitos Matemáticos , Estimulação Luminosa , Ritmo Teta , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...