Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 59(9): 1803-1816, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860486

RESUMO

Iron (Fe) is an essential cofactor for many metabolic enzymes of photoautotrophs. Although Fe limits phytoplankton productivity in broad areas of the ocean, phytoplankton have adapted their metabolism and growth to survive in these conditions. Using the euryhaline cyanobacterium Synechococcus sp. PCC7002, we investigated the physiological responses to long-term acclimation to four levels of Fe availability representative of the contemporary ocean (36.7, 3.83, 0.47 and 0.047 pM Fe'). With increasing severity of Fe limitation, Synechococcus sp. cells gradually decreased their volume and growth while increasing their energy allocation into organic carbon and nitrogen cellular pools. Furthermore, the total cellular content of pigments decreased. Additionally, with increasing severity of Fe limitation, intertwined responses of PSII functional cross-section (σPSII), re-oxidation time of the plastoquinone primary acceptor QA (τ) and non-photochemical quenching revealed a shift in the photophysiological response between mild to strong Fe limitation compared with severe limitation. Under mild and strong Fe limitation, there was a decrease in linear electron transport accompanied by progressive loss of state transitions. Under severe Fe limitation, state transitions seemed to be largely supplanted by alternative electron pathways. In addition, mechanisms to dissipate energy excess and minimize oxidative stress associated with high irradiances increased with increasing severity of Fe limitation. Overall, our results establish the sequence of physiological strategies adopted by the cells under increasing severity of chronic Fe limitation, within a range of Fe concentrations relevant to modern ocean biogeochemistry.


Assuntos
Ferro/administração & dosagem , Ferro/metabolismo , Luz , Synechococcus/fisiologia , Synechococcus/efeitos da radiação , Complexo de Proteína do Fotossistema II/fisiologia
2.
J Phycol ; 54(4): 505-517, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29791031

RESUMO

Impacts of rising atmospheric CO2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii, the effects of moderate and high natural solar radiation combined with either ambient or future pCO2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (Fv /Fm ) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom-forming Antarctic coastal diatoms might increase carbon contents under future pCO2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO2 sequestration potential of diatom communities in the future coastal Southern Ocean.


Assuntos
Dióxido de Carbono/química , Diatomáceas/fisiologia , Água do Mar/química , Luz Solar , Regiões Antárticas , Diatomáceas/efeitos da radiação , Concentração de Íons de Hidrogênio , Oceanos e Mares , Especificidade da Espécie
3.
Physiol Plant ; 160(2): 155-170, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28019019

RESUMO

To better understand the impact of ocean acidification (OA) and changes in light availability on Southern Ocean phytoplankton physiology, we investigated the effects of pCO2 (380 and 800 µatm) in combination with low and high irradiance (20 or 50 and 200 µmol photons m-2 s-1 ) on growth, particulate organic carbon (POC) fixation and photophysiology in the three ecologically relevant species Chaetoceros debilis, Fragilariopsis kerguelensis and Phaeocystis antarctica. Irrespective of the light scenario, neither growth nor POC per cell was stimulated by OA in any of the tested species and the two diatoms even displayed negative responses in growth (e.g. C. debilis) or POC content (e.g. F. kerguelensis) under OA in conjunction with high light. For both diatoms, also maximum quantum yields of photosystem II (Fv /Fm ) were decreased under these conditions, indicating lowered photochemical efficiencies. To counteract the negative effects by OA and high light, the two diatoms showed diverging photoacclimation strategies. While cellular chlorophyll a (Chl a) and fucoxanthin contents were enhanced in C. debilis to potentially maximize light absorption, F. kerguelensis exhibited reduced Chl a per cell, increased disconnection of antennae from photosystem II reaction centers and strongly lowered absolute electron transport rates (ETR). The decline in ETRs in F. kerguelensis might be explained in terms of different species-specific strategies for tuning the available flux of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Overall, our results revealed that P. antarctica was more tolerant to OA and changes in irradiance than the two diatoms, which may have important implications for biogeochemical cycling.


Assuntos
Carbono/metabolismo , Diatomáceas/metabolismo , Trifosfato de Adenosina/metabolismo , Clorofila/análogos & derivados , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , NADP/metabolismo , Oceanos e Mares , Fitoplâncton/metabolismo , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...