Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 10(10): 1407-1414, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620226

RESUMO

Glycogen synthase kinase-3ß (GSK3ß) is involved in many pathological conditions and represents an attractive drug target. We previously reported dual GSK3ß/p38α mitogen-activated protein kinase inhibitors and identified N-(4-(4-(4-fluorophenyl)-2-methyl-1H-imidazol-5-yl)pyridin-2-yl)cyclopropanecarboxamide (1) as a potent dual inhibitor of both target kinases. In this study, we aimed to design selective GSK3ß inhibitors based on our pyridinylimidazole scaffold. Our efforts resulted in several novel and potent GSK3ß inhibitors with IC50 values in the low nanomolar range. 5-(2-(Cyclopropanecarboxamido)pyridin-4-yl)-4-cyclopropyl-1H-imidazole-2-carboxamide (6g) displayed very good kinase selectivity as well as metabolical stability and inhibited GSK3ß activity in neuronal SH-SY5Y cells. Interestingly, we observed the importance of the 2-methylimidazole's tautomeric state for the compound activity. Finally, we reveal how this crucial tautomerism effect is surmounted by imidazole-2-carboxamides, which are able to stabilize the binding via enhanced water network interactions, regardless of their tautomeric state.

2.
Eur J Med Chem ; 175: 309-329, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096153

RESUMO

Compounds simultaneously inhibiting two targets that are involved in the progression of the same complex disease may exhibit additive or even synergistic therapeutic effects. Here we unveil 2,4,5-trisubstituted imidazoles as dual inhibitors of p38α mitogen-activated protein kinase and glycogen synthase kinase 3ß (GSK3ß). Both enzymes are potential therapeutic targets for neurodegenerative disorders, like Alzheimer's disease. A set of 39 compounds was synthesized and evaluated in kinase activity assays for their ability to inhibit both target kinases. Among the synthesized compounds, potent dual-target-directed inhibitors showing IC50 values down to the low double-digit nanomolar range, were identified. One of the best balanced dual inhibitors presented in here is N-(4-(2-ethyl-4-(4-fluorophenyl)-1H-imidazol-5-yl)pyridin-2-yl)cyclopropanecarboxamide (20c) (p38α, IC50 = 16 nM; GSK3ß, IC50 = 35 nM) featuring an excellent metabolic stability and an appreciable isoform selectivity over the closely related GSK3α. Our findings were rationalized by computational docking studies based on previously published X-ray structures.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Imidazóis/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Piridinas/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
3.
Int J Mycobacteriol ; 7(2): 156-161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900893

RESUMO

Background: Mycobacterium tuberculosis (Mtb) strains H37Ra and H37Rv are commonly used to study new and re-evaluate old antituberculous agents with respect to their pharmacodynamic effects in vitro. The differences in membrane proteins and, in particular, differences in carrier proteins between Mtb H37Ra and Mtb H37Rv may have an impact on antibiotic potency. The question of whether H37Ra can be used as a reliable surrogate for H37Rv and clinical strains has not been addressed sufficiently. The purpose of this study is to provide a full comparison of susceptibility data of the most common antituberculosis (TB) agents against both Mtb strains. Methods: In addition to a literature review, in vitro checkerboard susceptibility study was conducted comparing the in vitro minimum inhibitory concentration (MIC) of 16 common antituberculous drugs against H37Ra and H37Rv. Heifets-Sanchez TB agar drug susceptibility plates were utilized. Results: Half of the antibiotics demonstrated similar growth inhibition against both strains, while slightly differing MIC values were found for 7 of 16 drugs. With the exception of rifampicin, no marked difference in MIC against H37Ra and H37Rv was observed. Conclusion: While neither the attenuated (H37Ra) nor the virulent strain (H37Rv) is a clinical strain, both strains predicted MICs of clinical isolates equally well, when comparing the current in vitro results to clinical susceptibility data in the literature. H37Ra comes with the benefits of lower experimental costs and less administrative barriers including the requirement of a biosafety Level III environment.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/crescimento & desenvolvimento , Rifampina/farmacologia , Tuberculose/microbiologia
4.
Molecules ; 22(10)2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-29036906

RESUMO

In vitro and in vivo metabolism studies revealed that 2-alkylsulfanylimidazole ML3403 (4-(5-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-4-yl)-N-(1-phenylethyl)pyridin-2-amine) undergoes rapid oxidation to the sulfoxide. Replacing the sulfur atom present in the two potent p38α mitogen-activated protein (MAP) kinase inhibitors ML3403 and LN950 (2-((5-(4-fluorophenyl)-4-(2-((3-methylbutan-2-yl)amino)pyridin-4-yl)-1H-imidazol-2-yl)thio)ethan-1-ol) by a methylene group resulted in 2-alkylimidazole derivatives 1 and 2, respectively, having a remarkably improved metabolic stability. The 2-alkylimidazole analogs 1 and 2 showed 20% and 10% biotransformation after 4 h of incubation with human liver microsomes, respectively. They display a 4-fold increased binding affinity towards the target kinase as well as similar in vitro potency and ex vivo efficacy relative to their 2-alkylsulfanylimidazole counterparts ML3403 and LN950. For example, 2-alkylimidazole 2, the analog of LN950, inhibits both the p38α MAP kinase as well as the LPS-stimulated tumor necrosis factor-α release from human whole blood in the low double-digit nanomolar range.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Humanos , Modelos Moleculares , Estrutura Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Piridinas/farmacologia
5.
Oligonucleotides ; 17(2): 237-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17638527

RESUMO

Transfection of chemically synthesized short interfering RNAs (siRNAs) enables a high level of sequence-specific gene silencing. Although siRNA design algorithms have been improved in recent years, it is still necessary to prove the functionality of a given siRNA experimentally. We have functionally tested several thousand siRNAs for target genes from various gene families including kinases, phosphatases, and cancer-related genes (e.g., genes involved in apoptosis and the cell cycle). Some targets were difficult to silence above a threshold of 70% knockdown. By working with one design algorithm and a standardized validation procedure, we discovered that the level of silencing achieved was not exclusively dependent on the siRNA sequences. Here we present data showing that neither the gene expression level nor the cellular environment has a direct impact on the knockdown which can be achieved for a given target. Modifications of the experimental setting have been investigated with the aim of improving knockdown efficiencies for siRNA-target combinations that show only moderate knockdown. Use of higher siRNA concentrations did not change the overall performance of the siRNA-target combinations analyzed. Optimal knockdown at the mRNA level was usually reached 48-72 hours after transfection. Target gene-specific characteristics such as the accessibility of the corresponding target sequences to the RNAi machinery appear to have a significant influence on the knockdown observed, making certain targets easy or difficult to knock down using siRNA.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção/métodos , Algoritmos , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...