Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Jahrb Reg Wiss ; 43(1): 101-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260914

RESUMO

This paper analyzes how positional and relational data in 186 regions of Germany influence the location choices of knowledge-based firms. Where firms locate depends on specific local and interconnected resources, which are unevenly distributed in space. This paper presents an innovative way to study such firm location decisions through network analysis that relates exponential random graph modeling (ERGM) to the interlocking network model (INM). By combining attribute and relational data into a comprehensive dataset, we capture both the spatial point characteristics and the relationships between locations. Our approach departs from the general description of individual location decisions in cities and puts extensive networks of knowledge-intensive firms at the center of inquiry. This method can therefore be used to investigate the individual importance of accessibility and supra-local connectivity in firm networks. We use attributional data for transport (rail, air), universities, and population, each on a functional regional level; we use relational data for travel time (rail, road, air) and frequency of relations (rail, air) between two regions. The 186 functional regions are assigned to a three-level grade of urbanization, while knowledge-intensive economic activities are grouped into four knowledge bases. This research is vital to understand further the network structure under which firms choose locations. The results indicate that spatial features, such as the population of or universities in a region, seem to be favorable but also reveal distinct differences, i.e., the proximity to transport infrastructure and different valuations for accessibility for each knowledge base.

2.
Membranes (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984735

RESUMO

Polymer electrolyte membrane water electrolysis (PEMWE) is a leading candidate for the development of a sustainable hydrogen infrastructure. The heart of a PEMWE cell is represented by the membrane electrode assembly (MEA), which consists of a polymer electrolyte membrane (PEM) with catalyst layers (CLs), flow fields, and bipolar plates (BPPs). The weakest component of the system is the PEM, as it is prone to chemical and mechanical degradation. Membrane chemical degradation is associated with the formation of hydrogen peroxide due to the crossover of product gases (H2 and O2). In this paper, membrane failure due to H2 crossover was addressed in a membrane-focused accelerated stress test (AST). Asymmetric H2O and gas supply were applied to a test cell in OCV mode at two temperatures (60 °C and 80 °C). Electrochemical characterization at the beginning and at the end of testing revealed a 1.6-fold higher increase in the high-frequency resistance (HFR) at 80 °C. The hydrogen crossover was measured with a micro-GC, and the fluoride emission rate (FER) was monitored during the ASTs. A direct correlation between the FER and H2 crossover was identified, and accelerated membrane degradation at higher temperatures was detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...