Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 177: 152-157, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273738

RESUMO

PURPOSE: There is no consensus on appropriate organ at risk (OAR) constraints for short-course radiotherapy for patients with glioblastoma. Using dosimetry and prospectively-collected toxicity data from a trial of short-course radiotherapy for glioblastoma, this study aims to empirically examine the OAR constraints, with particular attention to left hippocampus dosimetry and impact on neuro-cognitive decline. METHODS AND MATERIALS: Data was taken from a randomized control trial of 133 adults (age 18-70 years; ECOG performance score 0-2) with newly diagnosed glioblastoma treated with 60 Gy in 30 (conventional arm) versus 20 (short-course arm) fractions of adjuvant chemoradiotherapy (ClinicalTrials.gov Identifier: NCT02206230). The delivered plan's dosimetry to the OARs was correlated to prospective-collected toxicity and Mini-Mental State Examination (MMSE) data. RESULTS: Toxicity events were not significantly increased in the short-course arm versus the conventional arm. Across all OARs, delivered radiation doses within protocol-allowable maximum doses correlated with lack of grade ≥ 2 toxicities in both arms (p < 0.001), while patients with OAR doses at or above protocol limits correlated with increased grade ≥ 2 toxicities across all examined OARs in both arms (p-values 0.063-0.250). Mean left hippocampus dose was significantly associated with post-radiotherapy decline in MMSE scores (p = 0.005), while the right hippocampus mean dose did not reach statistical significance (p = 0.277). Compared to the original clinical plan, RapidPlan left hippocampus sparing model decreased left hippocampus mean dose by 43 % (p < 0.001), without compromising planning target volume coverage. CONCLUSIONS: In this trial, protocol OAR constraints were appropriate for limiting grade ≥ 2 toxicities in conventional and short-course adjuvant chemoradiotherapy for glioblastoma. Higher left hippocampal mean doses were predictive for neuro-cognitive decline post-radiotherapy. Routine contouring and use of dose constraints to limit hippocampal dose is recommended to minimize neuro-cognitive decline in patients with glioblastoma treated with chemoradiotherapy.


Assuntos
Glioblastoma , Radioterapia de Intensidade Modulada , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Glioblastoma/radioterapia , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Prospectivos , Radiometria , Dosagem Radioterapêutica , Órgãos em Risco
2.
Med Phys ; 41(8): 082301, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086550

RESUMO

PURPOSE: Hybrid radiotherapy-MRI devices promise real time tracking of moving tumors to focus the radiation portals to the tumor during irradiation. This approach will benefit from the increased temporal resolution of MRI's data acquisition and reconstruction. In this work, the authors propose a novel spatial-temporal compressed sensing (CS) imaging strategy for the real time MRI--prior data assisted compressed sensing (PDACS), which aims to improve the image quality of the conventional CS without significantly increasing reconstruction times. METHODS: Conventional 2D CS requires a random sampling of partial k-space data, as well as an iterative reconstruction that simultaneously enforces the image's sparsity in a transform domain as well as maintains the fidelity to the acquired k-space. PDACS method requires the additional acquisition of the prior data, and for reconstruction, it additionally enforces fidelity to the prior k-space domain similar to viewsharing. In this work, the authors evaluated the proposed PDACS method by comparing its results to those obtained from the 2D CS and viewsharing methods when performed individually. All three methods are used to reconstruct images from lung cancer patients whose tumors move and who are likely to benefit from lung tumor tracking. The patients are scanned, using a 3T MRI, under free breathing using the fully sampled k-space with 2D dynamic bSSFP sequence in a sagittal plane containing lung tumor. These images form a reference set for the evaluation of the partial k-space methods. To create partial k-space, the fully sampled k-space is retrospectively undersampled to obtain a range of acquisition acceleration factors, and reconstructed with 2D-CS, PDACS, and viewshare methods. For evaluation, metrics assessing global image artifacts as well as tumor contour shape fidelity are determined from the reconstructed images. These analyses are performed both for the original 3T images and those at a simulated 0.5T equivalent noise level. RESULTS: In the 3.0T images, the PDACS strategy is shown to give superior results compared to viewshare and conventional 2D CS using all metrics. The 2D-CS tends to perform better than viewshare at the low acceleration factors, while the opposite is true at the high acceleration factors. At simulated 0.5T images, PDACS method performs only marginally better than the viewsharing method, both of which are superior compared to 2D CS. The PDACS image reconstruction time (0.3 s/image) is similar to that of the conventional 2D CS. CONCLUSIONS: The PDACS method can potentially improve the real time tracking of moving tumors by significantly increasing MRI's data acquisition speeds. In 3T images, the PDACS method does provide a benefit over the other two methods in terms of both the overall image quality and the ability to accurately and automatically contour the tumor shape. MRI's data acquisition may be accelerated using the simpler viewsharing strategy at the lower, 0.5T magnetic field, as the marginal benefit of the PDACS method may not justify its additional reconstruction times.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética/métodos , Artefatos , Simulação por Computador , Humanos , Pulmão/patologia , Movimento (Física) , Respiração , Estudos Retrospectivos , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...