Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 165228, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419369

RESUMO

Urban green spaces (UGS) and peri-urban green spaces (P-UGS) play a crucial role in reducing the land surface temperature within the urban environment, especially during heat waves. Although their cooling effect generally is due to shading and evaporation, the role of soil texture and soil water availability on surface cooling remains largely unexplored. This study investigated the impact of soil texture on the spatio-temporal patterns of LST in different UGSs and P-UGSs in Hamburg (Germany) during a hot summer drought period. The LST and the Normalized Differentiated Moisture and Vegetation Indices (NDMI, NDVI) were calculated based on two Landsat 8 OLI/TIRS images from July 2013. Non-spatial and spatial statistical approaches such as stepwise backward regression or Hotspot (Getis-Ord Gi*) analyses were applied explaining LST distributions in relation to soil texture within each UGS and P-UGS. All GSs were clearly characterized as surface cooling islands whereas, for each GS, an individual thermal footprint was observed. Within all GSs, the LST patterns showed a significant negative relationship to NDMI values, whereas the NDVI values and the elevation were of minor importance. Soil texture was found to influence the LST distribution significantly in most UGSs and P-UGSs, where sites on clay-rich soils showed the highest LST values compared to sites on sand- or silt-rich soils. For example, in parks, clayey soils showed a mean LST of 25.3 °C whereas sand-dominated sites had a mean LST of only 23.1 °C. This effect was consistent throughout all statistical approaches, for both dates and across most GSs. This unexpected result was explained by the very low unsaturated hydraulic conductivity in clayey soils which limits plant water uptake and transpiration rates responsible for the evaporative cooling effect. We concluded that soil texture has to be considered for understanding and managing the surface cooling capacity of UGSs and P-UGSs.

2.
Sci Total Environ ; 672: 162-173, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30954815

RESUMO

Subsoils control the release of hydrophobic pollutants to groundwater systems, but the role of subsoil soil organic carbon (SOC) in sorption processes of hydrophobic organic pollutants remains unclear. Thus, this study aimed to understand the role of subsoil SOC in sorption processes of 4-n-nonylphenol (NP) and perfluorooctanoic acid (PFOA) as model pollutants. To characterize the sorption behavior of NP and PFOA, 42 sub- and 54 topsoil samples were used for batch experiments. Differences in NP and PFOA sorption between sub- and topsoil samples and its mechanisms were identified using multiple regression analysis. Generally, the sorption of NP and PFOA was linear in all samples. The sorption of NP to soil samples (logKD = 1.78-3.68) was significantly higher and less variable than that of PFOA (logKD = -0.97-1.44). In topsoils, SOC content had the highest influence on NP and PFOA sorption. For NP, hydrophobic interactions between NP and SOC were identified as the most important sorption mechanism. For PFOA, hydrophobic as well as electrostatic interactions were determined depending on soil pH. In subsoils, the relevance of SOC content for pollutant sorption decreased drastically. For NP, not SOC content but rather SOC quality was relevant in SOC poor subsoils. For PFOA, clay and iron oxide content were found to be relevant for pollutant interactions with the solid phase. Thus, especially in SOC depleted subsoils, the sorption potential for PFOA remained unpredictable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...