Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(7): eaaw3651, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328163

RESUMO

Electrogenic cable bacteria can couple spatially separated redox reaction zones in marine sediments using multicellular filaments as electron conductors. Reported as generally absent from disturbed sediments, we have found subsurface cable aggregations associated with tubes of the parchment worm Chaetopterus variopedatus in otherwise intensely bioturbated deposits. Cable bacteria tap into tubes, which act as oxygenated conduits, creating a three-dimensional conducting network extending decimeters into sulfidic deposits. By elevating pH, promoting Mn, Fe-oxide precipitation in tube linings, and depleting S around tubes, they enhance tube preservation and favorable biogeochemical conditions within the tube. The presence of disseminated filaments a few cells in length away from oxygenated interfaces and the reported ability of cable bacteria to use a range of redox reaction couples suggest that these microbes are ubiquitous facultative opportunists and that long filaments are an end-member morphological adaptation to relatively stable redox domains.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Oxirredução , Água do Mar/microbiologia , Microbiologia da Água
2.
Chemosphere ; 204: 359-370, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29674148

RESUMO

The present study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 µm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elements measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.


Assuntos
Raízes de Plantas/metabolismo , Poaceae/metabolismo , Oligoelementos/análise , Oligoelementos/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...