Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 31(10): 107750, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521275

RESUMO

During virus entry, human papillomaviruses are sorted by the cellular trafficking complex, called retromer, into the retrograde transport pathway to traffic from the endosome to downstream cellular compartments, but regulation of retromer activity during HPV entry is poorly understood. Here we selected artificial proteins that modulate cellular proteins required for HPV infection and discovered that entry requires TBC1D5, a retromer-associated, Rab7-specific GTPase-activating protein. Binding of retromer to the HPV L2 capsid protein recruits TBC1D5 to retromer at the endosome membrane, which then stimulates hydrolysis of Rab7-GTP to drive retromer disassembly from HPV and delivery of HPV to the retrograde pathway. Although the cellular retromer cargos CIMPR and DMT1-II require only GTP-bound Rab7 for trafficking, HPV trafficking requires cycling between GTP- and GDP-bound Rab7. Thus, ongoing cargo-induced membrane recruitment, assembly, and disassembly of retromer complexes drive HPV trafficking.


Assuntos
Alphapapillomavirus/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Internalização do Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Alphapapillomavirus/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Queratinócitos , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo , proteínas de unión al GTP Rab7
2.
J Mol Biol ; 431(19): 3753-3770, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31301406

RESUMO

Specific interactions between the helical membrane-spanning domains of transmembrane proteins play central roles in the proper folding and oligomerization of these proteins. However, the relationship between the hydrophobic amino acid sequences of transmembrane domains and their functional interactions is in most cases unknown. Here, we use ultra-simple artificial proteins to systematically study the sequence basis for transmembrane domain interactions. We show that most short homopolymeric polyleucine transmembrane proteins containing single amino acid substitutions can activate the platelet-derived growth factor ß receptor or the erythropoietin receptor in cultured mouse cells, resulting in cell transformation or proliferation. These proteins displayed complex patterns of activity that were markedly affected by seemingly minor sequence differences in the ultra-simple protein itself or in the transmembrane domain of the target receptor, and the effects of these sequence differences are not additive. In addition, specific leucine residues along the length of these proteins are required for activity, and the positions of these required leucines differ based on the identity and position of the central substituted amino acid. Our results suggest that these ultra-simple proteins use a variety of molecular mechanisms to activate the same target and that diversification of transmembrane domain sequences over the course of evolution minimized off-target interactions.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Mutagênese/genética , Mutação/genética , Peptídeos/metabolismo , Domínios Proteicos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo
3.
Elife ; 62017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869036

RESUMO

Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.


Assuntos
Isoleucina/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Receptores da Eritropoetina/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas de Membrana/química , Camundongos , Ligação Proteica , Multimerização Proteica , Receptores da Eritropoetina/química , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 112(34): E4717-25, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261320

RESUMO

We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor ß-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context.


Assuntos
Isoleucina/química , Leucina/química , Proteínas/química , Proteínas/fisiologia , Sequência de Aminoácidos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...