Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 127, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014485

RESUMO

BACKGROUND: Since the 1980s, soils in a 22-km2 area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied. RESULTS: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus. Plants grown in the most suppressive soil have a reduced stress response to Oulema feeding, reflected by dampened levels of herbivore defense-related phytohormones and benzoxazinoids. Enhanced salicylate levels in insect-free plants indicate defense-priming operating in this soil. The rhizosphere microbiome of suppressive soils contained a higher proportion of plant-beneficial bacteria, coinciding with their microbiome networks being highly tolerant to the destabilizing impact of insect exposure observed in the rhizosphere of plants grown in the conducive soils. We suggest that presence of plant-beneficial bacteria in the suppressive soils along with priming, conferred plant resistance to the insect pest, manifesting also in the onset of insect microbiome dysbiosis by the displacement of the insect endosymbionts. CONCLUSIONS: Our results show that an intricate soil-plant-insect feedback, relying on a stress tolerant microbiome network with the presence of plant-beneficial bacteria and plant priming, extends natural soil suppressiveness from soilborne diseases to insect pests. Video Abstract.


Assuntos
Microbiota , Doenças das Plantas , Microbiologia do Solo , Animais , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rizosfera , Suíça , Insetos , Bactérias/classificação , Solo/química , Ascomicetos/fisiologia , Controle de Insetos/métodos , Raízes de Plantas/microbiologia , Herbivoria , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Simbiose
2.
Microbiol Spectr ; 11(6): e0204923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800913

RESUMO

IMPORTANCE: The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages). Thus, it is important to gain knowledge regarding the mechanisms behind phage-bacteria interactions to overcome this challenge. Here, we evidence that the major long O-antigenic polysaccharide (O-PS, O-antigen) of the widely used model plant-beneficial bacterium Pseudomonas protegens CHA0 is the receptor of its natural predator, the phage ΦGP100. We examined the distribution of the gene cluster directing the synthesis of this O-PS and identified signatures of horizontal gene acquisitions. Altogether, our study highlights the importance of bacterial cell surface structure variation in the complex interplay between phages and their Pseudomonas hosts.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Antígenos O/genética , Evolução Biológica , Bactérias
3.
Microbiome ; 11(1): 214, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770950

RESUMO

BACKGROUND: Plant-beneficial bacterial inoculants are of great interest in agriculture as they have the potential to promote plant growth and health. However, the inoculation of the rhizosphere microbiome often results in a suboptimal or transient colonization, which is due to a variety of factors that influence the fate of the inoculant. To better understand the fate of plant-beneficial inoculants in complex rhizosphere microbiomes, composed by hundreds of genotypes and multifactorial selection mechanisms, controlled studies with high-complexity soil microbiomes are needed. RESULTS: We analysed early compositional changes in a taxa-rich natural soil bacterial community under both exponential nutrient-rich and stationary nutrient-limited growth conditions (i.e. growing and stable communities, respectively) following inoculation with the plant-beneficial bacterium Pseudomonas protegens in a bulk soil or a wheat rhizosphere environment. P. protegens successfully established under all conditions tested and was more abundant in the rhizosphere of the stable community. Nutrient availability was a major factor driving microbiome composition and structure as well as the underlying assembly processes. While access to nutrients resulted in communities assembled mainly by homogeneous selection, stochastic processes dominated under the nutrient-deprived conditions. We also observed an increased rhizosphere selection effect under nutrient-limited conditions, resulting in a higher number of amplicon sequence variants (ASVs) whose relative abundance was enriched. The inoculation with P. protegens produced discrete changes, some of which involved other Pseudomonas. Direct competition between Pseudomonas strains partially failed to replicate the observed differences in the microbiome and pointed to a more complex interaction network. CONCLUSIONS: The results of this study show that nutrient availability is a major driving force of microbiome composition, structure and diversity in both the bulk soil and the wheat rhizosphere and determines the assembly processes that govern early microbiome development. The successful establishment of the inoculant was facilitated by the wheat rhizosphere and produced discrete changes among other members of the microbiome. Direct competition between Pseudomonas strains only partially explained the microbiome changes, indicating that indirect interactions or spatial distribution in the rhizosphere or soil interface may be crucial for the survival of certain bacteria. Video Abstract.


Assuntos
Solo , Triticum , Solo/química , Triticum/microbiologia , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Plantas , Pseudomonas/genética
4.
ISME J ; 17(9): 1369-1381, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311938

RESUMO

Strains belonging to the Pseudomonas protegens phylogenomic subgroup have long been known for their beneficial association with plant roots, notably antagonising soilborne phytopathogens. Interestingly, they can also infect and kill pest insects, emphasising their interest as biocontrol agents. In the present study, we used all available Pseudomonas genomes to reassess the phylogeny of this subgroup. Clustering analysis revealed the presence of 12 distinct species, many of which were previously unknown. The differences between these species also extend to the phenotypic level. Most of the species were able to antagonise two soilborne phytopathogens, Fusarium graminearum and Pythium ultimum, and to kill the plant pest insect Pieris brassicae in feeding and systemic infection assays. However, four strains failed to do so, likely as a consequence of adaptation to particular niches. The absence of the insecticidal Fit toxin explained the non-pathogenic behaviour of the four strains towards Pieris brassicae. Further analyses of the Fit toxin genomic island evidence that the loss of this toxin is related to non-insecticidal niche specialisation. This work expands the knowledge on the growing Pseudomonas protegens subgroup and suggests that loss of phytopathogen inhibition and pest insect killing abilities in some of these bacteria may be linked to species diversification processes involving adaptation to particular niches. Our work sheds light on the important ecological consequences of gain and loss dynamics for functions involved in pathogenic host interactions of environmental bacteria.


Assuntos
Insetos , Pseudomonas , Animais , Insetos/microbiologia , Filogenia , Plantas/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-30792970

RESUMO

Half of invasive fungal infections lead to death. Amongst pathogenic fungi, the most widespread species belong to the Candida genus and vary in their susceptibility to antifungal drugs. The emergence of antifungal resistance has become a major clinical problem. Therefore, the definition of susceptibility patterns is crucial for the survival of patients and the monitoring of resistance epidemiology. Although, most routinely used methods of AntiFungal Susceptibility Testing (AFST) have reached their limits, the rediscovery of Matrix Associated Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) in the field of mycology provides a promising alternative for the study of antifungal resistance. MALDI-TOF MS is already used in mycology for fungal identification, which permits to highlight inherent antifungal resistance. However, the main concern of clinicians is the rise of acquired antifungal resistance and the time needed for their detection. For this purpose, MALDI-TOF MS has been shown to be an accurate tool for AFST, presenting numerous advantages in comparison to commonly used techniques. Finally, MALDI-TOF MS could be used directly to detect resistance mechanisms through typing. Consequently, MALDI-TOF MS offers new perspectives in the context of healthcare associated outbreaks of emerging multi-drug resistant fungi, such as C. auris. As a proof of concept, we will illustrate the current and future benefits in using and adapting MALDI-TOF MS-based assays to define the susceptibility pattern of C. auris, by species identification, AFST, and typing.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Candida/classificação , Candida/isolamento & purificação , Candidíase Invasiva/microbiologia , Humanos , Técnicas de Tipagem Micológica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...